Spaces:
Sleeping
Sleeping
import numpy as np | |
from numpy.testing import assert_warns | |
from numpy.ma.testutils import (assert_, assert_equal, assert_raises, | |
assert_array_equal) | |
from numpy.ma.core import (masked_array, masked_values, masked, allequal, | |
MaskType, getmask, MaskedArray, nomask, | |
log, add, hypot, divide) | |
from numpy.ma.extras import mr_ | |
from numpy.compat import pickle | |
class MMatrix(MaskedArray, np.matrix,): | |
def __new__(cls, data, mask=nomask): | |
mat = np.matrix(data) | |
_data = MaskedArray.__new__(cls, data=mat, mask=mask) | |
return _data | |
def __array_finalize__(self, obj): | |
np.matrix.__array_finalize__(self, obj) | |
MaskedArray.__array_finalize__(self, obj) | |
return | |
def _series(self): | |
_view = self.view(MaskedArray) | |
_view._sharedmask = False | |
return _view | |
class TestMaskedMatrix: | |
def test_matrix_indexing(self): | |
# Tests conversions and indexing | |
x1 = np.matrix([[1, 2, 3], [4, 3, 2]]) | |
x2 = masked_array(x1, mask=[[1, 0, 0], [0, 1, 0]]) | |
x3 = masked_array(x1, mask=[[0, 1, 0], [1, 0, 0]]) | |
x4 = masked_array(x1) | |
# test conversion to strings | |
str(x2) # raises? | |
repr(x2) # raises? | |
# tests of indexing | |
assert_(type(x2[1, 0]) is type(x1[1, 0])) | |
assert_(x1[1, 0] == x2[1, 0]) | |
assert_(x2[1, 1] is masked) | |
assert_equal(x1[0, 2], x2[0, 2]) | |
assert_equal(x1[0, 1:], x2[0, 1:]) | |
assert_equal(x1[:, 2], x2[:, 2]) | |
assert_equal(x1[:], x2[:]) | |
assert_equal(x1[1:], x3[1:]) | |
x1[0, 2] = 9 | |
x2[0, 2] = 9 | |
assert_equal(x1, x2) | |
x1[0, 1:] = 99 | |
x2[0, 1:] = 99 | |
assert_equal(x1, x2) | |
x2[0, 1] = masked | |
assert_equal(x1, x2) | |
x2[0, 1:] = masked | |
assert_equal(x1, x2) | |
x2[0, :] = x1[0, :] | |
x2[0, 1] = masked | |
assert_(allequal(getmask(x2), np.array([[0, 1, 0], [0, 1, 0]]))) | |
x3[1, :] = masked_array([1, 2, 3], [1, 1, 0]) | |
assert_(allequal(getmask(x3)[1], masked_array([1, 1, 0]))) | |
assert_(allequal(getmask(x3[1]), masked_array([1, 1, 0]))) | |
x4[1, :] = masked_array([1, 2, 3], [1, 1, 0]) | |
assert_(allequal(getmask(x4[1]), masked_array([1, 1, 0]))) | |
assert_(allequal(x4[1], masked_array([1, 2, 3]))) | |
x1 = np.matrix(np.arange(5) * 1.0) | |
x2 = masked_values(x1, 3.0) | |
assert_equal(x1, x2) | |
assert_(allequal(masked_array([0, 0, 0, 1, 0], dtype=MaskType), | |
x2.mask)) | |
assert_equal(3.0, x2.fill_value) | |
def test_pickling_subbaseclass(self): | |
# Test pickling w/ a subclass of ndarray | |
a = masked_array(np.matrix(list(range(10))), mask=[1, 0, 1, 0, 0] * 2) | |
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): | |
a_pickled = pickle.loads(pickle.dumps(a, protocol=proto)) | |
assert_equal(a_pickled._mask, a._mask) | |
assert_equal(a_pickled, a) | |
assert_(isinstance(a_pickled._data, np.matrix)) | |
def test_count_mean_with_matrix(self): | |
m = masked_array(np.matrix([[1, 2], [3, 4]]), mask=np.zeros((2, 2))) | |
assert_equal(m.count(axis=0).shape, (1, 2)) | |
assert_equal(m.count(axis=1).shape, (2, 1)) | |
# Make sure broadcasting inside mean and var work | |
assert_equal(m.mean(axis=0), [[2., 3.]]) | |
assert_equal(m.mean(axis=1), [[1.5], [3.5]]) | |
def test_flat(self): | |
# Test that flat can return items even for matrices [#4585, #4615] | |
# test simple access | |
test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) | |
assert_equal(test.flat[1], 2) | |
assert_equal(test.flat[2], masked) | |
assert_(np.all(test.flat[0:2] == test[0, 0:2])) | |
# Test flat on masked_matrices | |
test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) | |
test.flat = masked_array([3, 2, 1], mask=[1, 0, 0]) | |
control = masked_array(np.matrix([[3, 2, 1]]), mask=[1, 0, 0]) | |
assert_equal(test, control) | |
# Test setting | |
test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) | |
testflat = test.flat | |
testflat[:] = testflat[[2, 1, 0]] | |
assert_equal(test, control) | |
testflat[0] = 9 | |
# test that matrices keep the correct shape (#4615) | |
a = masked_array(np.matrix(np.eye(2)), mask=0) | |
b = a.flat | |
b01 = b[:2] | |
assert_equal(b01.data, np.array([[1., 0.]])) | |
assert_equal(b01.mask, np.array([[False, False]])) | |
def test_allany_onmatrices(self): | |
x = np.array([[0.13, 0.26, 0.90], | |
[0.28, 0.33, 0.63], | |
[0.31, 0.87, 0.70]]) | |
X = np.matrix(x) | |
m = np.array([[True, False, False], | |
[False, False, False], | |
[True, True, False]], dtype=np.bool_) | |
mX = masked_array(X, mask=m) | |
mXbig = (mX > 0.5) | |
mXsmall = (mX < 0.5) | |
assert_(not mXbig.all()) | |
assert_(mXbig.any()) | |
assert_equal(mXbig.all(0), np.matrix([False, False, True])) | |
assert_equal(mXbig.all(1), np.matrix([False, False, True]).T) | |
assert_equal(mXbig.any(0), np.matrix([False, False, True])) | |
assert_equal(mXbig.any(1), np.matrix([True, True, True]).T) | |
assert_(not mXsmall.all()) | |
assert_(mXsmall.any()) | |
assert_equal(mXsmall.all(0), np.matrix([True, True, False])) | |
assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T) | |
assert_equal(mXsmall.any(0), np.matrix([True, True, False])) | |
assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T) | |
def test_compressed(self): | |
a = masked_array(np.matrix([1, 2, 3, 4]), mask=[0, 0, 0, 0]) | |
b = a.compressed() | |
assert_equal(b, a) | |
assert_(isinstance(b, np.matrix)) | |
a[0, 0] = masked | |
b = a.compressed() | |
assert_equal(b, [[2, 3, 4]]) | |
def test_ravel(self): | |
a = masked_array(np.matrix([1, 2, 3, 4, 5]), mask=[[0, 1, 0, 0, 0]]) | |
aravel = a.ravel() | |
assert_equal(aravel.shape, (1, 5)) | |
assert_equal(aravel._mask.shape, a.shape) | |
def test_view(self): | |
# Test view w/ flexible dtype | |
iterator = list(zip(np.arange(10), np.random.rand(10))) | |
data = np.array(iterator) | |
a = masked_array(iterator, dtype=[('a', float), ('b', float)]) | |
a.mask[0] = (1, 0) | |
test = a.view((float, 2), np.matrix) | |
assert_equal(test, data) | |
assert_(isinstance(test, np.matrix)) | |
assert_(not isinstance(test, MaskedArray)) | |
class TestSubclassing: | |
# Test suite for masked subclasses of ndarray. | |
def setup(self): | |
x = np.arange(5, dtype='float') | |
mx = MMatrix(x, mask=[0, 1, 0, 0, 0]) | |
self.data = (x, mx) | |
def test_maskedarray_subclassing(self): | |
# Tests subclassing MaskedArray | |
(x, mx) = self.data | |
assert_(isinstance(mx._data, np.matrix)) | |
def test_masked_unary_operations(self): | |
# Tests masked_unary_operation | |
(x, mx) = self.data | |
with np.errstate(divide='ignore'): | |
assert_(isinstance(log(mx), MMatrix)) | |
assert_equal(log(x), np.log(x)) | |
def test_masked_binary_operations(self): | |
# Tests masked_binary_operation | |
(x, mx) = self.data | |
# Result should be a MMatrix | |
assert_(isinstance(add(mx, mx), MMatrix)) | |
assert_(isinstance(add(mx, x), MMatrix)) | |
# Result should work | |
assert_equal(add(mx, x), mx+x) | |
assert_(isinstance(add(mx, mx)._data, np.matrix)) | |
with assert_warns(DeprecationWarning): | |
assert_(isinstance(add.outer(mx, mx), MMatrix)) | |
assert_(isinstance(hypot(mx, mx), MMatrix)) | |
assert_(isinstance(hypot(mx, x), MMatrix)) | |
def test_masked_binary_operations2(self): | |
# Tests domained_masked_binary_operation | |
(x, mx) = self.data | |
xmx = masked_array(mx.data.__array__(), mask=mx.mask) | |
assert_(isinstance(divide(mx, mx), MMatrix)) | |
assert_(isinstance(divide(mx, x), MMatrix)) | |
assert_equal(divide(mx, mx), divide(xmx, xmx)) | |
class TestConcatenator: | |
# Tests for mr_, the equivalent of r_ for masked arrays. | |
def test_matrix_builder(self): | |
assert_raises(np.ma.MAError, lambda: mr_['1, 2; 3, 4']) | |
def test_matrix(self): | |
# Test consistency with unmasked version. If we ever deprecate | |
# matrix, this test should either still pass, or both actual and | |
# expected should fail to be build. | |
actual = mr_['r', 1, 2, 3] | |
expected = np.ma.array(np.r_['r', 1, 2, 3]) | |
assert_array_equal(actual, expected) | |
# outer type is masked array, inner type is matrix | |
assert_equal(type(actual), type(expected)) | |
assert_equal(type(actual.data), type(expected.data)) | |