Spaces:
Sleeping
Sleeping
import numpy as np | |
import numba as nb | |
from numpy.random import PCG64 | |
from timeit import timeit | |
bit_gen = PCG64() | |
next_d = bit_gen.cffi.next_double | |
state_addr = bit_gen.cffi.state_address | |
def normals(n, state): | |
out = np.empty(n) | |
for i in range((n + 1) // 2): | |
x1 = 2.0 * next_d(state) - 1.0 | |
x2 = 2.0 * next_d(state) - 1.0 | |
r2 = x1 * x1 + x2 * x2 | |
while r2 >= 1.0 or r2 == 0.0: | |
x1 = 2.0 * next_d(state) - 1.0 | |
x2 = 2.0 * next_d(state) - 1.0 | |
r2 = x1 * x1 + x2 * x2 | |
f = np.sqrt(-2.0 * np.log(r2) / r2) | |
out[2 * i] = f * x1 | |
if 2 * i + 1 < n: | |
out[2 * i + 1] = f * x2 | |
return out | |
# Compile using Numba | |
normalsj = nb.jit(normals, nopython=True) | |
# Must use state address not state with numba | |
n = 10000 | |
def numbacall(): | |
return normalsj(n, state_addr) | |
rg = np.random.Generator(PCG64()) | |
def numpycall(): | |
return rg.normal(size=n) | |
# Check that the functions work | |
r1 = numbacall() | |
r2 = numpycall() | |
assert r1.shape == (n,) | |
assert r1.shape == r2.shape | |
t1 = timeit(numbacall, number=1000) | |
print(f'{t1:.2f} secs for {n} PCG64 (Numba/PCG64) gaussian randoms') | |
t2 = timeit(numpycall, number=1000) | |
print(f'{t2:.2f} secs for {n} PCG64 (NumPy/PCG64) gaussian randoms') | |
# example 2 | |
next_u32 = bit_gen.ctypes.next_uint32 | |
ctypes_state = bit_gen.ctypes.state | |
def bounded_uint(lb, ub, state): | |
mask = delta = ub - lb | |
mask |= mask >> 1 | |
mask |= mask >> 2 | |
mask |= mask >> 4 | |
mask |= mask >> 8 | |
mask |= mask >> 16 | |
val = next_u32(state) & mask | |
while val > delta: | |
val = next_u32(state) & mask | |
return lb + val | |
print(bounded_uint(323, 2394691, ctypes_state.value)) | |
def bounded_uints(lb, ub, n, state): | |
out = np.empty(n, dtype=np.uint32) | |
for i in range(n): | |
out[i] = bounded_uint(lb, ub, state) | |
bounded_uints(323, 2394691, 10000000, ctypes_state.value) | |