Update app.py
Browse files
app.py
CHANGED
@@ -1,218 +1,19 @@
|
|
1 |
-
|
2 |
-
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
import threading
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
import PIL.Image
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
from lcm_scheduler import LCMScheduler
|
20 |
-
from lcm_ov_pipeline import OVLatentConsistencyModelPipeline
|
21 |
-
|
22 |
-
from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel
|
23 |
-
|
24 |
-
import os
|
25 |
-
from tqdm import tqdm
|
26 |
-
|
27 |
-
from concurrent.futures import ThreadPoolExecutor
|
28 |
-
import uuid
|
29 |
-
|
30 |
-
DESCRIPTION = '''# Latent Consistency Model OpenVino CPU
|
31 |
-
Based on [Latency Consistency Model](https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model) HF space
|
32 |
-
|
33 |
-
<p>Running on CPU 🥶.</p>
|
34 |
-
'''
|
35 |
-
|
36 |
-
MAX_SEED = np.iinfo(np.int32).max
|
37 |
-
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1"
|
38 |
-
|
39 |
-
model_id = "Kano001/Dreamshaper_v7-Openvino"
|
40 |
-
batch_size = 1
|
41 |
-
width = int(os.getenv("IMAGE_WIDTH", "512"))
|
42 |
-
height = int(os.getenv("IMAGE_HEIGHT", "512"))
|
43 |
-
num_images = int(os.getenv("NUM_IMAGES", "1"))
|
44 |
-
|
45 |
-
class CustomOVModelVaeDecoder(OVModelVaeDecoder):
|
46 |
-
def __init__(
|
47 |
-
self, model: openvino.runtime.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None,
|
48 |
-
):
|
49 |
-
super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir)
|
50 |
-
|
51 |
-
scheduler = LCMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
52 |
-
pipe = OVLatentConsistencyModelPipeline.from_pretrained(model_id, scheduler = scheduler, compile = False, ov_config = {"CACHE_DIR":""})
|
53 |
-
|
54 |
-
# Inject TAESD
|
55 |
-
|
56 |
-
taesd_dir = snapshot_download(repo_id="Kano001/taesd-openvino")
|
57 |
-
pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), parent_model = pipe, model_dir = taesd_dir)
|
58 |
-
|
59 |
-
pipe.reshape(batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images)
|
60 |
-
pipe.compile()
|
61 |
-
|
62 |
-
# Personal Thing-----------------------------------
|
63 |
-
api_url = None
|
64 |
-
def make_api_request():
|
65 |
-
global api_url
|
66 |
-
response = requests.get("https://genielamp-image7.hf.space/")
|
67 |
-
api_url = response.text
|
68 |
-
match = re.search(r'"root"\s*:\s*"([^"]+)"', response.text)
|
69 |
-
api_url = match.group(1) + "/file="
|
70 |
-
print(api_url)
|
71 |
-
|
72 |
-
|
73 |
-
def delayed_api_request():
|
74 |
-
threading.Timer(10, make_api_request).start()
|
75 |
-
#------------------------------------------------------
|
76 |
-
|
77 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
78 |
-
if randomize_seed:
|
79 |
-
seed = random.randint(0, MAX_SEED)
|
80 |
-
return seed
|
81 |
-
|
82 |
-
def save_image(img, profile: gr.OAuthProfile | None, metadata: dict):
|
83 |
-
unique_name = str(uuid.uuid4()) + '.png'
|
84 |
-
img.save(unique_name)
|
85 |
-
return unique_name
|
86 |
-
|
87 |
-
def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict):
|
88 |
-
paths = []
|
89 |
-
with ThreadPoolExecutor() as executor:
|
90 |
-
paths = list(executor.map(save_image, image_array, [profile]*len(image_array), [metadata]*len(image_array)))
|
91 |
-
return paths
|
92 |
-
|
93 |
-
def generate(
|
94 |
-
prompt: str,
|
95 |
-
url: str,
|
96 |
-
seed: int = 0,
|
97 |
-
guidance_scale: float = 8.0,
|
98 |
-
num_inference_steps: int = 4,
|
99 |
-
randomize_seed: bool = False,
|
100 |
-
progress = gr.Progress(track_tqdm=True),
|
101 |
-
profile: gr.OAuthProfile | None = None,
|
102 |
-
) -> PIL.Image.Image:
|
103 |
-
global batch_size
|
104 |
-
global width
|
105 |
-
global height
|
106 |
-
global num_images
|
107 |
-
|
108 |
-
seed = randomize_seed_fn(seed, randomize_seed)
|
109 |
-
np.random.seed(seed)
|
110 |
-
start_time = time.time()
|
111 |
-
url = api_url
|
112 |
-
result = pipe(
|
113 |
-
prompt=prompt,
|
114 |
-
width=width,
|
115 |
-
height=height,
|
116 |
-
guidance_scale=guidance_scale,
|
117 |
-
num_inference_steps=num_inference_steps,
|
118 |
-
num_images_per_prompt=num_images,
|
119 |
-
output_type="pil",
|
120 |
-
).images
|
121 |
-
paths = save_images(result, profile, metadata={"prompt": prompt, "seed": seed, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps})
|
122 |
-
print(time.time() - start_time)
|
123 |
-
return paths, seed, url
|
124 |
-
|
125 |
-
examples = [
|
126 |
-
"portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography",
|
127 |
-
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
|
128 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
129 |
-
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece",
|
130 |
-
]
|
131 |
-
|
132 |
-
with gr.Blocks(css="style.css") as demo:
|
133 |
-
gr.Markdown(DESCRIPTION)
|
134 |
-
gr.DuplicateButton(
|
135 |
-
value="Duplicate Space for private use",
|
136 |
-
elem_id="duplicate-button",
|
137 |
-
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
138 |
-
)
|
139 |
-
|
140 |
-
with gr.Group():
|
141 |
-
with gr.Row():
|
142 |
-
prompt = gr.Text(
|
143 |
-
label="Prompt",
|
144 |
-
show_label=False,
|
145 |
-
max_lines=1,
|
146 |
-
placeholder="Enter your prompt",
|
147 |
-
container=False,
|
148 |
-
)
|
149 |
-
run_button = gr.Button("Run", scale=0)
|
150 |
-
result = gr.Gallery(
|
151 |
-
label="Generated images", show_label=False, elem_id="gallery", grid=[1]
|
152 |
-
)
|
153 |
-
with gr.Accordion("Advanced options", open=False):
|
154 |
-
seed = gr.Slider(
|
155 |
-
label="Seed",
|
156 |
-
minimum=0,
|
157 |
-
maximum=MAX_SEED,
|
158 |
-
step=1,
|
159 |
-
value=0,
|
160 |
-
randomize=True
|
161 |
-
)
|
162 |
-
randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
|
163 |
-
with gr.Row():
|
164 |
-
guidance_scale = gr.Slider(
|
165 |
-
label="Guidance scale for base",
|
166 |
-
minimum=2,
|
167 |
-
maximum=14,
|
168 |
-
step=0.1,
|
169 |
-
value=8.0,
|
170 |
-
)
|
171 |
-
num_inference_steps = gr.Slider(
|
172 |
-
label="Number of inference steps for base",
|
173 |
-
minimum=1,
|
174 |
-
maximum=8,
|
175 |
-
step=1,
|
176 |
-
value=4,
|
177 |
-
)
|
178 |
-
url = gr.Text(
|
179 |
-
label="url",
|
180 |
-
value="Null",
|
181 |
-
show_label=False,
|
182 |
-
placeholder="Null",
|
183 |
-
max_lines=1,
|
184 |
-
container=False,
|
185 |
-
interactive=False,
|
186 |
-
)
|
187 |
-
|
188 |
-
gr.Examples(
|
189 |
-
examples=examples,
|
190 |
-
inputs=prompt,
|
191 |
-
outputs=result,
|
192 |
-
fn=generate,
|
193 |
-
cache_examples=CACHE_EXAMPLES,
|
194 |
-
)
|
195 |
-
|
196 |
-
gr.on(
|
197 |
-
triggers=[
|
198 |
-
prompt.submit,
|
199 |
-
run_button.click,
|
200 |
-
],
|
201 |
-
fn=generate,
|
202 |
-
inputs=[
|
203 |
-
prompt,
|
204 |
-
seed,
|
205 |
-
url,
|
206 |
-
guidance_scale,
|
207 |
-
num_inference_steps,
|
208 |
-
randomize_seed
|
209 |
-
],
|
210 |
-
outputs=[result, seed, url],
|
211 |
-
api_name="run",
|
212 |
-
)
|
213 |
-
|
214 |
-
if __name__ == "__main__":
|
215 |
-
demo.queue(api_open=False)
|
216 |
-
delayed_api_request()
|
217 |
-
# demo.queue(max_size=20).launch()
|
218 |
-
demo.launch()
|
|
|
1 |
+
import asyncio
|
2 |
+
import websockets
|
3 |
+
from transformers import pipeline
|
4 |
|
5 |
+
# Load a Hugging Face model
|
6 |
+
nlp = pipeline("sentiment-analysis")
|
|
|
7 |
|
8 |
+
async def handle_client(websocket, path):
|
9 |
+
async for message in websocket:
|
10 |
+
# Process the message using the Hugging Face model
|
11 |
+
result = nlp(message)
|
12 |
+
# Send the result back to the client
|
13 |
+
await websocket.send(str(result))
|
14 |
|
15 |
+
# Start the WebSocket server
|
16 |
+
start_server = websockets.serve(handle_client, "localhost", 8765)
|
|
|
17 |
|
18 |
+
asyncio.get_event_loop().run_until_complete(start_server)
|
19 |
+
asyncio.get_event_loop().run_forever()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|