Delete lcm_scheduler.py
Browse files- lcm_scheduler.py +0 -529
lcm_scheduler.py
DELETED
@@ -1,529 +0,0 @@
|
|
1 |
-
# Copyright 2023 Stanford University Team and The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
|
16 |
-
# and https://github.com/hojonathanho/diffusion
|
17 |
-
|
18 |
-
import math
|
19 |
-
from dataclasses import dataclass
|
20 |
-
from typing import List, Optional, Tuple, Union
|
21 |
-
|
22 |
-
import numpy as np
|
23 |
-
import torch
|
24 |
-
|
25 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
26 |
-
from diffusers.utils import BaseOutput, logging
|
27 |
-
from diffusers.utils.torch_utils import randn_tensor
|
28 |
-
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
29 |
-
|
30 |
-
|
31 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
32 |
-
|
33 |
-
|
34 |
-
@dataclass
|
35 |
-
class LCMSchedulerOutput(BaseOutput):
|
36 |
-
"""
|
37 |
-
Output class for the scheduler's `step` function output.
|
38 |
-
|
39 |
-
Args:
|
40 |
-
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
41 |
-
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
42 |
-
denoising loop.
|
43 |
-
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
44 |
-
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
45 |
-
`pred_original_sample` can be used to preview progress or for guidance.
|
46 |
-
"""
|
47 |
-
|
48 |
-
prev_sample: torch.FloatTensor
|
49 |
-
denoised: Optional[torch.FloatTensor] = None
|
50 |
-
|
51 |
-
|
52 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
53 |
-
def betas_for_alpha_bar(
|
54 |
-
num_diffusion_timesteps,
|
55 |
-
max_beta=0.999,
|
56 |
-
alpha_transform_type="cosine",
|
57 |
-
):
|
58 |
-
"""
|
59 |
-
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
60 |
-
(1-beta) over time from t = [0,1].
|
61 |
-
|
62 |
-
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
63 |
-
to that part of the diffusion process.
|
64 |
-
|
65 |
-
|
66 |
-
Args:
|
67 |
-
num_diffusion_timesteps (`int`): the number of betas to produce.
|
68 |
-
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
69 |
-
prevent singularities.
|
70 |
-
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
71 |
-
Choose from `cosine` or `exp`
|
72 |
-
|
73 |
-
Returns:
|
74 |
-
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
75 |
-
"""
|
76 |
-
if alpha_transform_type == "cosine":
|
77 |
-
|
78 |
-
def alpha_bar_fn(t):
|
79 |
-
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
80 |
-
|
81 |
-
elif alpha_transform_type == "exp":
|
82 |
-
|
83 |
-
def alpha_bar_fn(t):
|
84 |
-
return math.exp(t * -12.0)
|
85 |
-
|
86 |
-
else:
|
87 |
-
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
|
88 |
-
|
89 |
-
betas = []
|
90 |
-
for i in range(num_diffusion_timesteps):
|
91 |
-
t1 = i / num_diffusion_timesteps
|
92 |
-
t2 = (i + 1) / num_diffusion_timesteps
|
93 |
-
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
94 |
-
return torch.tensor(betas, dtype=torch.float32)
|
95 |
-
|
96 |
-
|
97 |
-
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
|
98 |
-
def rescale_zero_terminal_snr(betas: torch.FloatTensor) -> torch.FloatTensor:
|
99 |
-
"""
|
100 |
-
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
|
101 |
-
|
102 |
-
|
103 |
-
Args:
|
104 |
-
betas (`torch.FloatTensor`):
|
105 |
-
the betas that the scheduler is being initialized with.
|
106 |
-
|
107 |
-
Returns:
|
108 |
-
`torch.FloatTensor`: rescaled betas with zero terminal SNR
|
109 |
-
"""
|
110 |
-
# Convert betas to alphas_bar_sqrt
|
111 |
-
alphas = 1.0 - betas
|
112 |
-
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
113 |
-
alphas_bar_sqrt = alphas_cumprod.sqrt()
|
114 |
-
|
115 |
-
# Store old values.
|
116 |
-
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
117 |
-
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
118 |
-
|
119 |
-
# Shift so the last timestep is zero.
|
120 |
-
alphas_bar_sqrt -= alphas_bar_sqrt_T
|
121 |
-
|
122 |
-
# Scale so the first timestep is back to the old value.
|
123 |
-
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
124 |
-
|
125 |
-
# Convert alphas_bar_sqrt to betas
|
126 |
-
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
|
127 |
-
alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
|
128 |
-
alphas = torch.cat([alphas_bar[0:1], alphas])
|
129 |
-
betas = 1 - alphas
|
130 |
-
|
131 |
-
return betas
|
132 |
-
|
133 |
-
|
134 |
-
class LCMScheduler(SchedulerMixin, ConfigMixin):
|
135 |
-
"""
|
136 |
-
`LCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
|
137 |
-
non-Markovian guidance.
|
138 |
-
|
139 |
-
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. [`~ConfigMixin`] takes care of storing all config
|
140 |
-
attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be
|
141 |
-
accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving
|
142 |
-
functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions.
|
143 |
-
|
144 |
-
Args:
|
145 |
-
num_train_timesteps (`int`, defaults to 1000):
|
146 |
-
The number of diffusion steps to train the model.
|
147 |
-
beta_start (`float`, defaults to 0.0001):
|
148 |
-
The starting `beta` value of inference.
|
149 |
-
beta_end (`float`, defaults to 0.02):
|
150 |
-
The final `beta` value.
|
151 |
-
beta_schedule (`str`, defaults to `"linear"`):
|
152 |
-
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
153 |
-
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
154 |
-
trained_betas (`np.ndarray`, *optional*):
|
155 |
-
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
156 |
-
original_inference_steps (`int`, *optional*, defaults to 50):
|
157 |
-
The default number of inference steps used to generate a linearly-spaced timestep schedule, from which we
|
158 |
-
will ultimately take `num_inference_steps` evenly spaced timesteps to form the final timestep schedule.
|
159 |
-
clip_sample (`bool`, defaults to `True`):
|
160 |
-
Clip the predicted sample for numerical stability.
|
161 |
-
clip_sample_range (`float`, defaults to 1.0):
|
162 |
-
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
|
163 |
-
set_alpha_to_one (`bool`, defaults to `True`):
|
164 |
-
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
|
165 |
-
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
|
166 |
-
otherwise it uses the alpha value at step 0.
|
167 |
-
steps_offset (`int`, defaults to 0):
|
168 |
-
An offset added to the inference steps. You can use a combination of `offset=1` and
|
169 |
-
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
|
170 |
-
Diffusion.
|
171 |
-
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
172 |
-
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
173 |
-
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
174 |
-
Video](https://imagen.research.google/video/paper.pdf) paper).
|
175 |
-
thresholding (`bool`, defaults to `False`):
|
176 |
-
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
177 |
-
as Stable Diffusion.
|
178 |
-
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
179 |
-
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
180 |
-
sample_max_value (`float`, defaults to 1.0):
|
181 |
-
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
|
182 |
-
timestep_spacing (`str`, defaults to `"leading"`):
|
183 |
-
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
184 |
-
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
185 |
-
rescale_betas_zero_snr (`bool`, defaults to `False`):
|
186 |
-
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
187 |
-
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
188 |
-
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
189 |
-
"""
|
190 |
-
|
191 |
-
order = 1
|
192 |
-
|
193 |
-
@register_to_config
|
194 |
-
def __init__(
|
195 |
-
self,
|
196 |
-
num_train_timesteps: int = 1000,
|
197 |
-
beta_start: float = 0.00085,
|
198 |
-
beta_end: float = 0.012,
|
199 |
-
beta_schedule: str = "scaled_linear",
|
200 |
-
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
201 |
-
original_inference_steps: int = 50,
|
202 |
-
clip_sample: bool = False,
|
203 |
-
clip_sample_range: float = 1.0,
|
204 |
-
set_alpha_to_one: bool = True,
|
205 |
-
steps_offset: int = 0,
|
206 |
-
prediction_type: str = "epsilon",
|
207 |
-
thresholding: bool = False,
|
208 |
-
dynamic_thresholding_ratio: float = 0.995,
|
209 |
-
sample_max_value: float = 1.0,
|
210 |
-
timestep_spacing: str = "leading",
|
211 |
-
rescale_betas_zero_snr: bool = False,
|
212 |
-
):
|
213 |
-
if trained_betas is not None:
|
214 |
-
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
215 |
-
elif beta_schedule == "linear":
|
216 |
-
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
217 |
-
elif beta_schedule == "scaled_linear":
|
218 |
-
# this schedule is very specific to the latent diffusion model.
|
219 |
-
self.betas = (
|
220 |
-
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
221 |
-
)
|
222 |
-
elif beta_schedule == "squaredcos_cap_v2":
|
223 |
-
# Glide cosine schedule
|
224 |
-
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
225 |
-
else:
|
226 |
-
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
227 |
-
|
228 |
-
# Rescale for zero SNR
|
229 |
-
if rescale_betas_zero_snr:
|
230 |
-
self.betas = rescale_zero_terminal_snr(self.betas)
|
231 |
-
|
232 |
-
self.alphas = 1.0 - self.betas
|
233 |
-
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
234 |
-
|
235 |
-
# At every step in ddim, we are looking into the previous alphas_cumprod
|
236 |
-
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
237 |
-
# `set_alpha_to_one` decides whether we set this parameter simply to one or
|
238 |
-
# whether we use the final alpha of the "non-previous" one.
|
239 |
-
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
240 |
-
|
241 |
-
# standard deviation of the initial noise distribution
|
242 |
-
self.init_noise_sigma = 1.0
|
243 |
-
|
244 |
-
# setable values
|
245 |
-
self.num_inference_steps = None
|
246 |
-
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
|
247 |
-
|
248 |
-
self._step_index = None
|
249 |
-
|
250 |
-
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
251 |
-
def _init_step_index(self, timestep):
|
252 |
-
if isinstance(timestep, torch.Tensor):
|
253 |
-
timestep = timestep.to(self.timesteps.device)
|
254 |
-
|
255 |
-
index_candidates = (self.timesteps == timestep).nonzero()
|
256 |
-
|
257 |
-
# The sigma index that is taken for the **very** first `step`
|
258 |
-
# is always the second index (or the last index if there is only 1)
|
259 |
-
# This way we can ensure we don't accidentally skip a sigma in
|
260 |
-
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
261 |
-
if len(index_candidates) > 1:
|
262 |
-
step_index = index_candidates[1]
|
263 |
-
else:
|
264 |
-
step_index = index_candidates[0]
|
265 |
-
|
266 |
-
self._step_index = step_index.item()
|
267 |
-
|
268 |
-
@property
|
269 |
-
def step_index(self):
|
270 |
-
return self._step_index
|
271 |
-
|
272 |
-
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
|
273 |
-
"""
|
274 |
-
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
275 |
-
current timestep.
|
276 |
-
|
277 |
-
Args:
|
278 |
-
sample (`torch.FloatTensor`):
|
279 |
-
The input sample.
|
280 |
-
timestep (`int`, *optional*):
|
281 |
-
The current timestep in the diffusion chain.
|
282 |
-
Returns:
|
283 |
-
`torch.FloatTensor`:
|
284 |
-
A scaled input sample.
|
285 |
-
"""
|
286 |
-
return sample
|
287 |
-
|
288 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
289 |
-
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
290 |
-
"""
|
291 |
-
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
292 |
-
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
293 |
-
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
294 |
-
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
295 |
-
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
296 |
-
|
297 |
-
https://arxiv.org/abs/2205.11487
|
298 |
-
"""
|
299 |
-
dtype = sample.dtype
|
300 |
-
batch_size, channels, *remaining_dims = sample.shape
|
301 |
-
|
302 |
-
if dtype not in (torch.float32, torch.float64):
|
303 |
-
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
|
304 |
-
|
305 |
-
# Flatten sample for doing quantile calculation along each image
|
306 |
-
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
307 |
-
|
308 |
-
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
309 |
-
|
310 |
-
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
311 |
-
s = torch.clamp(
|
312 |
-
s, min=1, max=self.config.sample_max_value
|
313 |
-
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
314 |
-
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
315 |
-
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
316 |
-
|
317 |
-
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
318 |
-
sample = sample.to(dtype)
|
319 |
-
|
320 |
-
return sample
|
321 |
-
|
322 |
-
def set_timesteps(
|
323 |
-
self,
|
324 |
-
num_inference_steps: int,
|
325 |
-
device: Union[str, torch.device] = None,
|
326 |
-
original_inference_steps: Optional[int] = None,
|
327 |
-
):
|
328 |
-
"""
|
329 |
-
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
330 |
-
|
331 |
-
Args:
|
332 |
-
num_inference_steps (`int`):
|
333 |
-
The number of diffusion steps used when generating samples with a pre-trained model.
|
334 |
-
device (`str` or `torch.device`, *optional*):
|
335 |
-
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
336 |
-
original_inference_steps (`int`, *optional*):
|
337 |
-
The original number of inference steps, which will be used to generate a linearly-spaced timestep
|
338 |
-
schedule (which is different from the standard `diffusers` implementation). We will then take
|
339 |
-
`num_inference_steps` timesteps from this schedule, evenly spaced in terms of indices, and use that as
|
340 |
-
our final timestep schedule. If not set, this will default to the `original_inference_steps` attribute.
|
341 |
-
"""
|
342 |
-
|
343 |
-
if num_inference_steps > self.config.num_train_timesteps:
|
344 |
-
raise ValueError(
|
345 |
-
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
346 |
-
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
347 |
-
f" maximal {self.config.num_train_timesteps} timesteps."
|
348 |
-
)
|
349 |
-
|
350 |
-
self.num_inference_steps = num_inference_steps
|
351 |
-
original_steps = (
|
352 |
-
original_inference_steps if original_inference_steps is not None else self.original_inference_steps
|
353 |
-
)
|
354 |
-
|
355 |
-
if original_steps > self.config.num_train_timesteps:
|
356 |
-
raise ValueError(
|
357 |
-
f"`original_steps`: {original_steps} cannot be larger than `self.config.train_timesteps`:"
|
358 |
-
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
359 |
-
f" maximal {self.config.num_train_timesteps} timesteps."
|
360 |
-
)
|
361 |
-
|
362 |
-
if num_inference_steps > original_steps:
|
363 |
-
raise ValueError(
|
364 |
-
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `original_inference_steps`:"
|
365 |
-
f" {original_steps} because the final timestep schedule will be a subset of the"
|
366 |
-
f" `original_inference_steps`-sized initial timestep schedule."
|
367 |
-
)
|
368 |
-
|
369 |
-
# LCM Timesteps Setting
|
370 |
-
# Currently, only linear spacing is supported.
|
371 |
-
c = self.config.num_train_timesteps // original_steps
|
372 |
-
# LCM Training Steps Schedule
|
373 |
-
lcm_origin_timesteps = np.asarray(list(range(1, original_steps + 1))) * c - 1
|
374 |
-
skipping_step = len(lcm_origin_timesteps) // num_inference_steps
|
375 |
-
# LCM Inference Steps Schedule
|
376 |
-
timesteps = lcm_origin_timesteps[::-skipping_step][:num_inference_steps]
|
377 |
-
|
378 |
-
self.timesteps = torch.from_numpy(timesteps.copy()).to(device=device, dtype=torch.long)
|
379 |
-
|
380 |
-
self._step_index = None
|
381 |
-
|
382 |
-
def get_scalings_for_boundary_condition_discrete(self, t):
|
383 |
-
self.sigma_data = 0.5 # Default: 0.5
|
384 |
-
|
385 |
-
# By dividing 0.1: This is almost a delta function at t=0.
|
386 |
-
c_skip = self.sigma_data**2 / ((t / 0.1) ** 2 + self.sigma_data**2)
|
387 |
-
c_out = (t / 0.1) / ((t / 0.1) ** 2 + self.sigma_data**2) ** 0.5
|
388 |
-
return c_skip, c_out
|
389 |
-
|
390 |
-
def step(
|
391 |
-
self,
|
392 |
-
model_output: torch.FloatTensor,
|
393 |
-
timestep: int,
|
394 |
-
sample: torch.FloatTensor,
|
395 |
-
generator: Optional[torch.Generator] = None,
|
396 |
-
return_dict: bool = True,
|
397 |
-
) -> Union[LCMSchedulerOutput, Tuple]:
|
398 |
-
"""
|
399 |
-
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
400 |
-
process from the learned model outputs (most often the predicted noise).
|
401 |
-
|
402 |
-
Args:
|
403 |
-
model_output (`torch.FloatTensor`):
|
404 |
-
The direct output from learned diffusion model.
|
405 |
-
timestep (`float`):
|
406 |
-
The current discrete timestep in the diffusion chain.
|
407 |
-
sample (`torch.FloatTensor`):
|
408 |
-
A current instance of a sample created by the diffusion process.
|
409 |
-
generator (`torch.Generator`, *optional*):
|
410 |
-
A random number generator.
|
411 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
412 |
-
Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`.
|
413 |
-
Returns:
|
414 |
-
[`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`:
|
415 |
-
If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a
|
416 |
-
tuple is returned where the first element is the sample tensor.
|
417 |
-
"""
|
418 |
-
if self.num_inference_steps is None:
|
419 |
-
raise ValueError(
|
420 |
-
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
421 |
-
)
|
422 |
-
|
423 |
-
if self.step_index is None:
|
424 |
-
self._init_step_index(timestep)
|
425 |
-
|
426 |
-
# 1. get previous step value
|
427 |
-
prev_step_index = self.step_index + 1
|
428 |
-
if prev_step_index < len(self.timesteps):
|
429 |
-
prev_timestep = self.timesteps[prev_step_index]
|
430 |
-
else:
|
431 |
-
prev_timestep = timestep
|
432 |
-
|
433 |
-
# 2. compute alphas, betas
|
434 |
-
alpha_prod_t = self.alphas_cumprod[timestep]
|
435 |
-
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
436 |
-
|
437 |
-
beta_prod_t = 1 - alpha_prod_t
|
438 |
-
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
439 |
-
|
440 |
-
# 3. Get scalings for boundary conditions
|
441 |
-
c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep)
|
442 |
-
|
443 |
-
# 4. Compute the predicted original sample x_0 based on the model parameterization
|
444 |
-
if self.config.prediction_type == "epsilon": # noise-prediction
|
445 |
-
predicted_original_sample = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt()
|
446 |
-
elif self.config.prediction_type == "sample": # x-prediction
|
447 |
-
predicted_original_sample = model_output
|
448 |
-
elif self.config.prediction_type == "v_prediction": # v-prediction
|
449 |
-
predicted_original_sample = alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output
|
450 |
-
else:
|
451 |
-
raise ValueError(
|
452 |
-
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
|
453 |
-
" `v_prediction` for `LCMScheduler`."
|
454 |
-
)
|
455 |
-
|
456 |
-
# 5. Clip or threshold "predicted x_0"
|
457 |
-
if self.config.thresholding:
|
458 |
-
predicted_original_sample = self._threshold_sample(predicted_original_sample)
|
459 |
-
elif self.config.clip_sample:
|
460 |
-
predicted_original_sample = predicted_original_sample.clamp(
|
461 |
-
-self.config.clip_sample_range, self.config.clip_sample_range
|
462 |
-
)
|
463 |
-
|
464 |
-
# 6. Denoise model output using boundary conditions
|
465 |
-
denoised = c_out * predicted_original_sample + c_skip * sample
|
466 |
-
|
467 |
-
# 7. Sample and inject noise z ~ N(0, I) for MultiStep Inference
|
468 |
-
# Noise is not used for one-step sampling.
|
469 |
-
if len(self.timesteps) > 1:
|
470 |
-
noise = randn_tensor(model_output.shape, generator=generator, device=model_output.device)
|
471 |
-
prev_sample = alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise
|
472 |
-
else:
|
473 |
-
prev_sample = denoised
|
474 |
-
|
475 |
-
# upon completion increase step index by one
|
476 |
-
self._step_index += 1
|
477 |
-
|
478 |
-
if not return_dict:
|
479 |
-
return (prev_sample, denoised)
|
480 |
-
|
481 |
-
return LCMSchedulerOutput(prev_sample=prev_sample, denoised=denoised)
|
482 |
-
|
483 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
484 |
-
def add_noise(
|
485 |
-
self,
|
486 |
-
original_samples: torch.FloatTensor,
|
487 |
-
noise: torch.FloatTensor,
|
488 |
-
timesteps: torch.IntTensor,
|
489 |
-
) -> torch.FloatTensor:
|
490 |
-
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
491 |
-
alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
|
492 |
-
timesteps = timesteps.to(original_samples.device)
|
493 |
-
|
494 |
-
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
495 |
-
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
496 |
-
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
497 |
-
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
498 |
-
|
499 |
-
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
500 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
501 |
-
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
502 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
503 |
-
|
504 |
-
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
505 |
-
return noisy_samples
|
506 |
-
|
507 |
-
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
|
508 |
-
def get_velocity(
|
509 |
-
self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
|
510 |
-
) -> torch.FloatTensor:
|
511 |
-
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
512 |
-
alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
|
513 |
-
timesteps = timesteps.to(sample.device)
|
514 |
-
|
515 |
-
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
516 |
-
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
517 |
-
while len(sqrt_alpha_prod.shape) < len(sample.shape):
|
518 |
-
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
519 |
-
|
520 |
-
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
521 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
522 |
-
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
|
523 |
-
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
524 |
-
|
525 |
-
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
526 |
-
return velocity
|
527 |
-
|
528 |
-
def __len__(self):
|
529 |
-
return self.config.num_train_timesteps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|