clone3 commited on
Commit
bc3aeb9
·
1 Parent(s): dfe7793

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -44
app.py CHANGED
@@ -1,47 +1,25 @@
1
  import gradio as gr
2
- import threading
3
- import requests
4
- import time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- def send_dummy_request(space_url):
7
- try:
8
- response = requests.get(space_url)
9
- # Print the response status code (optional)
10
- print(f"Response Status Code Of Wait: {response.status_code}")
11
- except Exception as e:
12
- print(f"Error: {e}")
13
-
14
- def send_dummy_request_self(space_url_self):
15
- try:
16
- response = requests.get(space_url_self)
17
- # Print the response status code (optional)
18
- print(f"Response Status Code Of Self: {response.status_code}")
19
- except Exception as e:
20
- print(f"Error: {e}")
21
-
22
- def background_request(space_url,space_url_self, interval_seconds):
23
- try:
24
- while True:
25
- send_dummy_request(space_url)
26
- send_dummy_request_self(space_url_self)
27
- time.sleep(interval_seconds)
28
- except KeyboardInterrupt:
29
- print("Background script terminated by user.")
30
-
31
- # Replace 'YOUR_SPACE_URL' with the actual URL of your deployed Hugging Face Space
32
- space_url = 'https://huggingface.co/spaces/clone3/Wait'
33
- space_url_self = 'https://huggingface.co/spaces/clone3/Sender'
34
-
35
- # Set the interval for sending requests (in seconds)
36
- interval_seconds = 1800 # 30 minutes
37
-
38
- # Start the background thread
39
- background_thread = threading.Thread(target=background_request, args=(space_url,space_url_self, interval_seconds))
40
- background_thread.start()
41
-
42
- # Gradio interface
43
- def echo_text(text):
44
- return f"You said: {text}"
45
-
46
- iface = gr.Interface(fn=echo_text, inputs="text", outputs="text")
47
  iface.launch()
 
1
  import gradio as gr
2
+ import websockets
3
+ import asyncio
4
+
5
+ async def send_to_websocket(message):
6
+ uri = "ws://localhost:8765" # Replace with your WebSocket server URI
7
+ async with websockets.connect(uri) as websocket:
8
+ await websocket.send(message)
9
+ response = await websocket.recv()
10
+ return response
11
+
12
+ def predict(input_text):
13
+ # You can replace this with your actual machine learning model prediction logic
14
+ # For now, we'll just send the input to the WebSocket server and echo the response
15
+ response = asyncio.run(send_to_websocket(input_text))
16
+ return response
17
+
18
+ iface = gr.Interface(
19
+ fn=predict,
20
+ inputs=gr.Textbox(),
21
+ outputs="text",
22
+ live=True,
23
+ )
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  iface.launch()