cloud-sean commited on
Commit
fd611a8
·
1 Parent(s): cce1341

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -8
app.py CHANGED
@@ -8,11 +8,15 @@ from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTex
8
  from langchain.embeddings.openai import OpenAIEmbeddings
9
  from langchain import VectorDBQA
10
  from langchain.llms import AzureOpenAI
 
 
 
 
11
 
12
  os.environ["OPENAI_API_TYPE"] = openai.api_type = "azure"
13
- os.environ["OPENAI_API_VERSION"] = openai.api_version = "2022-12-01"
14
  os.environ["OPENAI_API_BASE"] = openai.api_base = "https://openai-endpoint.openai.azure.com/"
15
- openai.api_key = os.environ["OPENAI_API_KEY"]
16
 
17
 
18
  def upload_pdf(file, pdf_text, embeddings, vectorstore, azure_embeddings, qa, progress = gr.Progress(track_tqdm=True)):
@@ -52,7 +56,8 @@ def upload_pdf(file, pdf_text, embeddings, vectorstore, azure_embeddings, qa, pr
52
  documents=texts,
53
  embeddings=embeddings,
54
  metadatas=[{"source": "source"} for text in texts])
55
- qa = VectorDBQA.from_chain_type(llm= AzureOpenAI(deployment_name="davinci003", model_name="text-davinci-003"), chain_type="stuff", vectorstore=vectorstore)
 
56
 
57
  return pdf_text, pdf_text, embeddings, vectorstore, azure_embeddings, qa, gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
58
 
@@ -63,8 +68,9 @@ def add_text(chatstate, query, qa):
63
 
64
  return chatstate, chatstate, qa
65
 
66
- with gr.Blocks(css="footer {visibility: hidden}") as demo:
67
  qa = pdf_text = embeddings = vectorstore = azure_embeddings = gr.State([])
 
68
  with gr.Row(visible=False) as chat_row:
69
  chatbot = gr.Chatbot()
70
  with gr.Row(visible=False) as submit_row:
@@ -72,9 +78,6 @@ with gr.Blocks(css="footer {visibility: hidden}") as demo:
72
  chatstate = gr.State([])
73
  text.submit(add_text, [chatstate, text, qa], [chatbot, chatstate, qa])
74
 
75
-
76
-
77
-
78
  # set state
79
  with gr.Column() as upload_column:
80
 
@@ -83,7 +86,8 @@ with gr.Blocks(css="footer {visibility: hidden}") as demo:
83
  output_text = gr.TextArea()
84
  upload_btn.click(upload_pdf, inputs=[file, pdf_text, embeddings, vectorstore, azure_embeddings, qa], outputs=[output_text, pdf_text, embeddings, vectorstore, azure_embeddings, qa, chat_row, submit_row, upload_column])
85
 
86
-
 
87
 
88
 
89
  demo.launch(enable_queue=True)
 
8
  from langchain.embeddings.openai import OpenAIEmbeddings
9
  from langchain import VectorDBQA
10
  from langchain.llms import AzureOpenAI
11
+ from langchain.chains import RetrievalQA
12
+ from langchain.chat_models import AzureChatOpenAI
13
+
14
+ # from langchain.chat_models import AzureChatOpenAI
15
 
16
  os.environ["OPENAI_API_TYPE"] = openai.api_type = "azure"
17
+ os.environ["OPENAI_API_VERSION"] = openai.api_version = "2023-03-15-preview"
18
  os.environ["OPENAI_API_BASE"] = openai.api_base = "https://openai-endpoint.openai.azure.com/"
19
+ openai.api_key = os.environ["OPENAI_API_KEY"] = "b83d692637df4e339298f24790a2dcb6"
20
 
21
 
22
  def upload_pdf(file, pdf_text, embeddings, vectorstore, azure_embeddings, qa, progress = gr.Progress(track_tqdm=True)):
 
56
  documents=texts,
57
  embeddings=embeddings,
58
  metadatas=[{"source": "source"} for text in texts])
59
+ qa = RetrievalQA.from_chain_type(llm= AzureChatOpenAI(deployment_name="Bartos", model_name='gpt-35-turbo' ), chain_type="stuff", retriever=vectorstore.as_retriever())
60
+ # qa = RetrievalQA.from_chain_type(llm= AzureOpenAI(deployment_name="davinci003", model_name="text-davinci-003"), chain_type="stuff", vectorstore=vectorstore)
61
 
62
  return pdf_text, pdf_text, embeddings, vectorstore, azure_embeddings, qa, gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
63
 
 
68
 
69
  return chatstate, chatstate, qa
70
 
71
+ with gr.Blocks(css="footer {visibility: hidden}", title='PDF - Q&A') as demo:
72
  qa = pdf_text = embeddings = vectorstore = azure_embeddings = gr.State([])
73
+
74
  with gr.Row(visible=False) as chat_row:
75
  chatbot = gr.Chatbot()
76
  with gr.Row(visible=False) as submit_row:
 
78
  chatstate = gr.State([])
79
  text.submit(add_text, [chatstate, text, qa], [chatbot, chatstate, qa])
80
 
 
 
 
81
  # set state
82
  with gr.Column() as upload_column:
83
 
 
86
  output_text = gr.TextArea()
87
  upload_btn.click(upload_pdf, inputs=[file, pdf_text, embeddings, vectorstore, azure_embeddings, qa], outputs=[output_text, pdf_text, embeddings, vectorstore, azure_embeddings, qa, chat_row, submit_row, upload_column])
88
 
89
+ with gr.Row():
90
+ gr.Markdown("`now with GPT-3.5 Turbo`")
91
 
92
 
93
  demo.launch(enable_queue=True)