cloud-sean commited on
Commit
0f14f3d
·
1 Parent(s): f1e027f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from langchain import OpenAI, PromptTemplate, LLMChain
3
+ from langchain.text_splitter import CharacterTextSplitter
4
+ from langchain.chains.mapreduce import MapReduceChain
5
+ from langchain.prompts import PromptTemplate
6
+ from langchain.chat_models import AzureChatOpenAI
7
+ from langchain.chains.summarize import load_summarize_chain
8
+ from langchain.chains import AnalyzeDocumentChain
9
+ from PyPDF2 import PdfReader
10
+ from langchain.document_loaders import TextLoader
11
+ from langchain.indexes import VectorstoreIndexCreator
12
+ from langchain.document_loaders import PyPDFLoader
13
+
14
+
15
+
16
+ import os
17
+ os.environ["OPENAI_API_TYPE"] = "azure"
18
+ os.environ["OPENAI_API_VERSION"] = "2023-05-15"
19
+ os.environ["OPENAI_API_BASE"] = "https://cog-mnjbf5r4o6b3e.openai.azure.com/"
20
+ os.environ["OPENAI_API_KEY"] = "957f7d98b47a467a98a786f7ca903112"
21
+
22
+ llm = AzureChatOpenAI(
23
+ deployment_name="gpt-4",
24
+ openai_api_version="2023-03-15-preview")
25
+
26
+
27
+
28
+ st.title("Contract Management System")
29
+
30
+ # description text
31
+ st.write("""Hello! I'm an Al chatbot specifically created to assist vou with any procurement-related questions you may have. My range of capabilities includes providing information on contract expiry dates payment terms, and other relevant details.
32
+
33
+ Feel free to ask me anything you need help with!
34
+ To get started, just provide me with the contract number and let me know what specitic details you're interested in. Additionally, tee tree to ask me any general questions you may have regardinc procurement. I'm here to assist vou in any way can 😊""")
35
+
36
+ # pdf file upload
37
+ pdf_file = st.file_uploader("Upload file", type=["pdf"])
38
+
39
+
40
+ def extract_text_from_pdf():
41
+ reader = PdfReader(pdf_file)
42
+ # get all pages text
43
+ text = [reader.pages[i].extract_text() for i in range(len(reader.pages))]
44
+ # join all pages text
45
+ text = " ".join(text)
46
+ return text
47
+
48
+
49
+
50
+ if st.button("Summerize Contract"):
51
+ with st.spinner("Extracting Text..."):
52
+ summary_chain = load_summarize_chain(llm, chain_type="map_reduce")
53
+ summarize_document_chain = AnalyzeDocumentChain(combine_docs_chain=summary_chain, verbose=True)
54
+ text = extract_text_from_pdf()
55
+ with st.spinner("Summarizing..."):
56
+ result = summarize_document_chain.run(text)
57
+ st.write(result)