Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
import plotly.express as px
|
5 |
+
|
6 |
+
st.set_page_config(page_title="Interactive 12 Pubs of Christmas", layout="wide")
|
7 |
+
|
8 |
+
# ------------------------------------
|
9 |
+
# Parameters & Constants
|
10 |
+
# ------------------------------------
|
11 |
+
# Julia's data
|
12 |
+
julia_weight_lbs = 120
|
13 |
+
julia_weight_kg = julia_weight_lbs * 0.45359237
|
14 |
+
julia_weight_g = julia_weight_kg * 1000
|
15 |
+
julia_r = 0.55
|
16 |
+
|
17 |
+
# Sean's data
|
18 |
+
sean_weight_kg = 86.0
|
19 |
+
sean_weight_g = sean_weight_kg * 1000
|
20 |
+
sean_r = 0.68
|
21 |
+
|
22 |
+
beta = 0.015 # g/dL/h elimination rate
|
23 |
+
g_per_unit = 8
|
24 |
+
|
25 |
+
# Drink options
|
26 |
+
# We'll define a few drink types with their volumes and ABVs.
|
27 |
+
# For simplicity, we assume:
|
28 |
+
# - 1 UK pint = 568 ml
|
29 |
+
# - Half beer = Half pint = 284 ml
|
30 |
+
# - Shot = 30 ml
|
31 |
+
# - ABV is given in percentage.
|
32 |
+
# We'll approximate each drink's ethanol mass:
|
33 |
+
# Ethanol mass (g) = volume (ml) * density_of_ethanol(0.789 g/ml) * (ABV/100)
|
34 |
+
# For simplicity, we use a units-based approach:
|
35 |
+
# 1 unit (UK) = 10ml pure ethanol = 8g ethanol
|
36 |
+
# Units = (Volume in ml * ABV%) / 1000 (approx UK definition: 1 unit = 10ml pure ethanol)
|
37 |
+
# So ethanol in grams = Units * 8.
|
38 |
+
|
39 |
+
drink_options = {
|
40 |
+
"Guinness (Pint)": {"volume_ml": 568, "abv": 4.2},
|
41 |
+
"Heineken (Pint)": {"volume_ml": 568, "abv": 5.0},
|
42 |
+
"Stella Artois (Pint)": {"volume_ml": 568, "abv": 4.8},
|
43 |
+
"Half Beer (Generic)": {"volume_ml": 284, "abv": 4.0},
|
44 |
+
"Vodka Shot": {"volume_ml": 30, "abv": 40.0},
|
45 |
+
"Whiskey Shot": {"volume_ml": 30, "abv": 40.0},
|
46 |
+
"Cider (Pint)": {"volume_ml": 568, "abv": 4.5},
|
47 |
+
"Red Wine (175ml)": {"volume_ml": 175, "abv": 12.0}
|
48 |
+
}
|
49 |
+
|
50 |
+
# A function to calculate ethanol grams from a given drink
|
51 |
+
def alcohol_in_grams(volume_ml, abv_percent):
|
52 |
+
# 1 unit (UK) ~ (volume_ml * abv) / 1000 * (8g/unit)
|
53 |
+
units = (volume_ml * abv_percent) / 1000
|
54 |
+
return units * 8 # grams of ethanol
|
55 |
+
|
56 |
+
def bac_calculation(total_alcohol_g, W, r, t):
|
57 |
+
# Widmark formula approximation:
|
58 |
+
# BAC = (A/(W*r))*100 - beta*(t-1) if t>1
|
59 |
+
bac = (total_alcohol_g / (W * r)) * 100
|
60 |
+
if t > 1:
|
61 |
+
bac = bac - beta*(t-1)
|
62 |
+
return max(bac,0)
|
63 |
+
|
64 |
+
st.title("12 Pubs of Christmas - Interactive Drink Selection")
|
65 |
+
|
66 |
+
st.write("""
|
67 |
+
Select the drinks you (Julia) and Sean will consume each hour over a 6-hour period.
|
68 |
+
We'll estimate your BAC levels and show you comparisons.
|
69 |
+
|
70 |
+
**Note:** These are rough estimates and not medically accurate. Actual BAC varies by individual.
|
71 |
+
""")
|
72 |
+
|
73 |
+
hours = 6
|
74 |
+
|
75 |
+
col_drinks = st.columns(hours)
|
76 |
+
selected_drinks = []
|
77 |
+
st.subheader("Select Drinks for Each Hour")
|
78 |
+
for i in range(hours):
|
79 |
+
with col_drinks[i]:
|
80 |
+
drink_choice = st.selectbox(
|
81 |
+
f"Hour {i+1} Drink",
|
82 |
+
list(drink_options.keys()),
|
83 |
+
key=f"drink_hour_{i}"
|
84 |
+
)
|
85 |
+
selected_drinks.append(drink_choice)
|
86 |
+
|
87 |
+
# Calculate total alcohol consumed per hour
|
88 |
+
alcohol_by_hour = []
|
89 |
+
for i, d in enumerate(selected_drinks):
|
90 |
+
vol = drink_options[d]["volume_ml"]
|
91 |
+
abv = drink_options[d]["abv"]
|
92 |
+
grams = alcohol_in_grams(vol, abv)
|
93 |
+
alcohol_by_hour.append(grams)
|
94 |
+
|
95 |
+
# Cumulative alcohol and BAC calculations
|
96 |
+
time_points = list(range(hours+1)) # from 0 to 6
|
97 |
+
julia_bac = []
|
98 |
+
sean_bac = []
|
99 |
+
julia_alc_over_time = []
|
100 |
+
sean_alc_over_time = []
|
101 |
+
|
102 |
+
for t in time_points:
|
103 |
+
# total alcohol consumed up to hour t
|
104 |
+
total_alc = sum(alcohol_by_hour[:t])
|
105 |
+
# Julia BAC
|
106 |
+
julia_bac_val = bac_calculation(total_alc, julia_weight_g, julia_r, t)
|
107 |
+
julia_bac.append(julia_bac_val)
|
108 |
+
# Sean BAC
|
109 |
+
sean_bac_val = bac_calculation(total_alc, sean_weight_g, sean_r, t)
|
110 |
+
sean_bac.append(sean_bac_val)
|
111 |
+
|
112 |
+
df = pd.DataFrame({
|
113 |
+
"Hour": time_points,
|
114 |
+
"Julia_BAC": julia_bac,
|
115 |
+
"Sean_BAC": sean_bac,
|
116 |
+
"Total_Alcohol_Consumed_g": [sum(alcohol_by_hour[:t]) for t in time_points]
|
117 |
+
})
|
118 |
+
|
119 |
+
# Calculate difference
|
120 |
+
df["BAC_Difference"] = df["Julia_BAC"] - df["Sean_BAC"]
|
121 |
+
|
122 |
+
# Plot 1: BAC over time
|
123 |
+
st.subheader("BAC over Time")
|
124 |
+
fig_bac = go.Figure()
|
125 |
+
fig_bac.add_trace(go.Scatter(x=df["Hour"], y=df["Julia_BAC"], mode='lines+markers', name="Julia BAC", line=dict(color='firebrick', width=3)))
|
126 |
+
fig_bac.add_trace(go.Scatter(x=df["Hour"], y=df["Sean_BAC"], mode='lines+markers', name="Sean BAC", line=dict(color='royalblue', width=3)))
|
127 |
+
fig_bac.update_layout(title="Estimated BAC vs. Time (Hours)", xaxis_title="Hours", yaxis_title="BAC (%)", template="plotly_white")
|
128 |
+
st.plotly_chart(fig_bac, use_container_width=True)
|
129 |
+
|
130 |
+
# Plot 2: Alcohol consumed vs BAC (Dual-Axis)
|
131 |
+
st.subheader("Alcohol Consumed and BAC")
|
132 |
+
fig_bar_line = go.Figure()
|
133 |
+
|
134 |
+
# Bar for total alcohol consumed at each hour
|
135 |
+
fig_bar_line.add_trace(go.Bar(x=df["Hour"], y=df["Total_Alcohol_Consumed_g"], name="Total Alcohol (g)", marker_color='goldenrod', yaxis='y1'))
|
136 |
+
# Julia BAC line
|
137 |
+
fig_bar_line.add_trace(go.Scatter(x=df["Hour"], y=df["Julia_BAC"], name="Julia BAC", mode='lines+markers', line=dict(color='firebrick', width=3), yaxis='y2'))
|
138 |
+
# Sean BAC line
|
139 |
+
fig_bar_line.add_trace(go.Scatter(x=df["Hour"], y=df["Sean_BAC"], name="Sean BAC", mode='lines+markers', line=dict(color='royalblue', width=3), yaxis='y2'))
|
140 |
+
|
141 |
+
fig_bar_line.update_layout(
|
142 |
+
title="Total Alcohol (g) vs BAC (%) Over Time",
|
143 |
+
xaxis=dict(title="Hour"),
|
144 |
+
yaxis=dict(title="Total Alcohol (g)", side='left', range=[0, df["Total_Alcohol_Consumed_g"].max()*1.1]),
|
145 |
+
yaxis2=dict(title="BAC (%)", side='right', overlaying='y', range=[0, df[["Julia_BAC","Sean_BAC"]].max().max()*1.1]),
|
146 |
+
template="plotly_white"
|
147 |
+
)
|
148 |
+
st.plotly_chart(fig_bar_line, use_container_width=True)
|
149 |
+
|
150 |
+
# Plot 3: Difference in BAC
|
151 |
+
st.subheader("Difference in BAC (Julia - Sean)")
|
152 |
+
fig_diff = go.Figure(go.Bar(
|
153 |
+
x=df["Hour"],
|
154 |
+
y=df["BAC_Difference"],
|
155 |
+
text=[f"{d:.3f}%" for d in df["BAC_Difference"]],
|
156 |
+
textposition='outside',
|
157 |
+
marker_color='indianred'
|
158 |
+
))
|
159 |
+
fig_diff.update_layout(
|
160 |
+
title="Difference in BAC Between Julia and Sean Over Time",
|
161 |
+
xaxis_title="Hour",
|
162 |
+
yaxis_title="Difference in BAC (%)",
|
163 |
+
template="plotly_white"
|
164 |
+
)
|
165 |
+
st.plotly_chart(fig_diff, use_container_width=True)
|
166 |
+
|
167 |
+
# Plot 4: Pie/Donut Chart of Alcohol Proportions if needed
|
168 |
+
# For a bit of fun, let's compare the total alcohol consumed to their body weight as a fraction
|
169 |
+
st.subheader("Alcohol as a Percentage of Body Weight")
|
170 |
+
# 1g = 0.001 kg
|
171 |
+
julia_pct_body_weight = (df["Total_Alcohol_Consumed_g"].iloc[-1] / julia_weight_g)*100
|
172 |
+
sean_pct_body_weight = (df["Total_Alcohol_Consumed_g"].iloc[-1] / sean_weight_g)*100
|
173 |
+
|
174 |
+
donut_data = pd.DataFrame({
|
175 |
+
"Person": ["Julia", "Sean"],
|
176 |
+
"Alcohol_as_pct_body_weight": [julia_pct_body_weight, sean_pct_body_weight]
|
177 |
+
})
|
178 |
+
|
179 |
+
fig_donut = px.pie(donut_data, values='Alcohol_as_pct_body_weight', names='Person', hole=0.5,
|
180 |
+
color='Person', color_discrete_map={"Julia":"firebrick","Sean":"royalblue"})
|
181 |
+
fig_donut.update_layout(title="Alcohol Consumed as % of Body Weight", template="plotly_white")
|
182 |
+
st.plotly_chart(fig_donut, use_container_width=True)
|
183 |
+
|
184 |
+
st.write("""
|
185 |
+
**Disclaimer:**
|
186 |
+
These BAC values are rough estimates. Actual impairment depends on many factors including metabolism,
|
187 |
+
recent food intake, and individual tolerance. This tool is for illustrative purposes only.
|
188 |
+
""")
|