Update app.py
Browse files
app.py
CHANGED
@@ -11,8 +11,13 @@ load_dotenv()
|
|
11 |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
12 |
|
13 |
# Function to process the image and get response from Gemini model
|
14 |
-
def get_gemini_response(
|
15 |
try:
|
|
|
|
|
|
|
|
|
|
|
16 |
# Validate the image file path
|
17 |
if not uploaded_file_path or not os.path.exists(uploaded_file_path):
|
18 |
return "Please upload a valid image."
|
@@ -32,11 +37,6 @@ def get_gemini_response(input_prompt, uploaded_file_path, query):
|
|
32 |
except Exception as e:
|
33 |
return f"Error: {e}"
|
34 |
|
35 |
-
# Define input prompt
|
36 |
-
default_prompt = """
|
37 |
-
You are an expert in understanding invoices. You will receive input images as invoices and
|
38 |
-
you will have to answer questions based on the input image.
|
39 |
-
"""
|
40 |
|
41 |
# Define Gradio interface
|
42 |
with gr.Blocks() as invoice_extractor:
|
@@ -47,9 +47,6 @@ with gr.Blocks() as invoice_extractor:
|
|
47 |
The system uses Google's Gemini model to extract and interpret the invoice details.
|
48 |
"""
|
49 |
)
|
50 |
-
|
51 |
-
input_prompt = default_prompt
|
52 |
-
# gr.Textbox(label="Input Prompt", value=default_prompt, lines=2)
|
53 |
image_input = gr.Image(label="Upload Invoice Image", type="filepath") # Use type="filepath"
|
54 |
query_input = gr.Textbox(label="Enter your query about the invoice", placeholder="e.g., What is the total amount?")
|
55 |
output_response = gr.Textbox(label="Response", lines=5)
|
@@ -60,7 +57,7 @@ with gr.Blocks() as invoice_extractor:
|
|
60 |
# Set the button to call the processing function
|
61 |
submit_btn.click(
|
62 |
get_gemini_response,
|
63 |
-
inputs=[
|
64 |
outputs=output_response
|
65 |
)
|
66 |
|
|
|
11 |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
12 |
|
13 |
# Function to process the image and get response from Gemini model
|
14 |
+
def get_gemini_response(uploaded_file_path, query):
|
15 |
try:
|
16 |
+
# Define input prompt
|
17 |
+
input_prompt = """
|
18 |
+
You are an expert in understanding invoices. You will receive input images as invoices and
|
19 |
+
you will have to answer questions based on the input image.
|
20 |
+
"""
|
21 |
# Validate the image file path
|
22 |
if not uploaded_file_path or not os.path.exists(uploaded_file_path):
|
23 |
return "Please upload a valid image."
|
|
|
37 |
except Exception as e:
|
38 |
return f"Error: {e}"
|
39 |
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
# Define Gradio interface
|
42 |
with gr.Blocks() as invoice_extractor:
|
|
|
47 |
The system uses Google's Gemini model to extract and interpret the invoice details.
|
48 |
"""
|
49 |
)
|
|
|
|
|
|
|
50 |
image_input = gr.Image(label="Upload Invoice Image", type="filepath") # Use type="filepath"
|
51 |
query_input = gr.Textbox(label="Enter your query about the invoice", placeholder="e.g., What is the total amount?")
|
52 |
output_response = gr.Textbox(label="Response", lines=5)
|
|
|
57 |
# Set the button to call the processing function
|
58 |
submit_btn.click(
|
59 |
get_gemini_response,
|
60 |
+
inputs=[image_input, query_input],
|
61 |
outputs=output_response
|
62 |
)
|
63 |
|