|
import gradio as gr |
|
import pandas as pd |
|
|
|
|
|
def calculate_bmi(weight, height): |
|
height_in_meters = height / 100 |
|
bmi = weight / (height_in_meters ** 2) |
|
|
|
if bmi < 18.5: |
|
category = "Underweight" |
|
elif 18.5 <= bmi < 24.9: |
|
category = "Normal weight" |
|
else: |
|
category = "Overweight" |
|
|
|
return bmi, category |
|
|
|
|
|
def calorie_intake(age, gender, weight, height, activity_level): |
|
if gender == "Male": |
|
bmr = 10 * weight + 6.25 * height - 5 * age + 5 |
|
else: |
|
bmr = 10 * weight + 6.25 * height - 5 * age - 161 |
|
|
|
activity_multiplier = { |
|
"Sedentary": 1.2, |
|
"Lightly active": 1.375, |
|
"Moderately active": 1.55, |
|
"Very active": 1.725, |
|
"Super active": 1.9 |
|
} |
|
|
|
calories_needed = bmr * activity_multiplier[activity_level] |
|
return calories_needed |
|
|
|
|
|
def process_csv(file): |
|
df = pd.read_csv(file.name) |
|
results = [] |
|
|
|
for _, row in df.iterrows(): |
|
name = row["Name"] |
|
age = row["Age"] |
|
gender = row["Gender"] |
|
height = row["Height_cm"] |
|
weight = row["Weight_kg"] |
|
activity_level = row["Activity_Level"] |
|
|
|
bmi, bmi_category = calculate_bmi(weight, height) |
|
calories = calorie_intake(age, gender, weight, height, activity_level) |
|
|
|
results.append({ |
|
"Name": name, |
|
"BMI": f"{bmi:.2f}", |
|
"BMI Category": bmi_category, |
|
"Daily Calorie Needs (kcal)": f"{calories:.0f}", |
|
}) |
|
|
|
return pd.DataFrame(results) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Personal Health Tracker") |
|
gr.Markdown("### Upload your CSV file to calculate BMI and daily calorie needs for each person. format should be: Name,Age,Gender,Height_cm,Weight_kg,Activity_Level") |
|
|
|
|
|
file_upload = gr.File(label="Upload CSV File", type="filepath") |
|
|
|
|
|
output = gr.DataFrame(headers=["Name", "BMI", "BMI Category", "Daily Calorie Needs (kcal)"]) |
|
|
|
|
|
process_button = gr.Button("Process CSV") |
|
|
|
|
|
process_button.click(fn=process_csv, inputs=[file_upload], outputs=[output]) |
|
|
|
|
|
demo.launch() |
|
|