pratikshahp commited on
Commit
b414125
·
verified ·
1 Parent(s): 0385b67

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -38
app.py CHANGED
@@ -1,48 +1,80 @@
1
  import gradio as gr
2
  import pandas as pd
3
- from PIL import Image
4
 
5
- # Function to read CSV and show preview
6
- def read_csv(file):
7
- df = pd.read_csv(file.name)
8
- return df.head() # Show only the first 5 rows for preview
 
 
 
 
 
 
 
 
 
9
 
10
- # Function to upload and display an image
11
- def upload_image(image_file):
12
- img = Image.open(image_file.name)
13
- return img
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
- # Function to select CSV display options (Preview or Full View)
16
- def toggle_view(file, view_type):
17
  df = pd.read_csv(file.name)
18
- if view_type == "Preview":
19
- return df.head() # Show the first 5 rows for preview
20
- return df # Show the entire data
21
-
22
- # Creating Gradio Interface
23
- with gr.Blocks() as demo:
24
- # Create a menu bar
25
- gr.HTML("""
26
- <div style="background-color:#f5f5f5;padding:10px;border-radius:5px;">
27
- <h3 style="margin:0;">CSV and Image Viewer App</h3>
28
- </div>
29
- """)
30
-
31
- # Image Upload Section
32
- with gr.Row():
33
- image_input = gr.File(label="Upload Image", type="filepath", file_count="single")
34
- image_output = gr.Image(type="pil")
35
- image_input.change(upload_image, inputs=image_input, outputs=image_output)
36
-
37
- # CSV File Upload Section
38
- with gr.Row():
39
- file_input = gr.File(label="Upload CSV File", type="filepath")
40
- file_output = gr.DataFrame()
41
 
42
- # Radio buttons to select CSV view type (Preview or Full)
43
- view_selector = gr.Radio(label="View Type", choices=["Preview", "Full View"], value="Preview")
44
 
45
- file_input.change(toggle_view, inputs=[file_input, view_selector], outputs=file_output)
46
- view_selector.change(toggle_view, inputs=[file_input, view_selector], outputs=file_output)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
 
48
  demo.launch()
 
1
  import gradio as gr
2
  import pandas as pd
3
+ import matplotlib.pyplot as plt
4
 
5
+ # Function to calculate BMI
6
+ def calculate_bmi(weight, height):
7
+ height_in_meters = height / 100 # Convert cm to meters
8
+ bmi = weight / (height_in_meters ** 2)
9
+
10
+ if bmi < 18.5:
11
+ category = "Underweight"
12
+ elif 18.5 <= bmi < 24.9:
13
+ category = "Normal weight"
14
+ else:
15
+ category = "Overweight"
16
+
17
+ return bmi, category
18
 
19
+ # Function to estimate daily calorie intake based on activity level
20
+ def calorie_intake(age, gender, weight, height, activity_level):
21
+ if gender == "Male":
22
+ bmr = 10 * weight + 6.25 * height - 5 * age + 5
23
+ else:
24
+ bmr = 10 * weight + 6.25 * height - 5 * age - 161
25
+
26
+ activity_multiplier = {
27
+ "Sedentary": 1.2,
28
+ "Lightly active": 1.375,
29
+ "Moderately active": 1.55,
30
+ "Very active": 1.725,
31
+ "Super active": 1.9
32
+ }
33
+
34
+ calories_needed = bmr * activity_multiplier[activity_level]
35
+ return calories_needed
36
 
37
+ # Function to read the CSV file and calculate BMI & Calorie Intake for each user
38
+ def process_csv(file):
39
  df = pd.read_csv(file.name)
40
+ results = []
41
+
42
+ for _, row in df.iterrows():
43
+ name = row["Name"]
44
+ age = row["Age"]
45
+ gender = row["Gender"]
46
+ height = row["Height_cm"]
47
+ weight = row["Weight_kg"]
48
+ activity_level = row["Activity_Level"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
+ bmi, bmi_category = calculate_bmi(weight, height)
51
+ calories = calorie_intake(age, gender, weight, height, activity_level)
52
 
53
+ results.append({
54
+ "Name": name,
55
+ "BMI": f"{bmi:.2f}",
56
+ "BMI Category": bmi_category,
57
+ "Daily Calorie Needs (kcal)": f"{calories:.0f}",
58
+ })
59
+
60
+ return pd.DataFrame(results)
61
+
62
+ # Create the Gradio interface
63
+ with gr.Blocks() as demo:
64
+ gr.Markdown("# Personal Health Tracker")
65
+ gr.Markdown("### Upload your CSV file to calculate BMI and daily calorie needs for each person.")
66
+
67
+ # File Upload
68
+ file_upload = gr.File(label="Upload CSV File", type="file")
69
+
70
+ # Output for the result
71
+ output = gr.DataFrame(headers=["Name", "BMI", "BMI Category", "Daily Calorie Needs (kcal)"])
72
+
73
+ # Button to trigger processing
74
+ process_button = gr.Button("Process CSV")
75
+
76
+ # Function trigger
77
+ process_button.click(fn=process_csv, inputs=[file_upload], outputs=[output])
78
 
79
+ # Launch the app
80
  demo.launch()