Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,80 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
-
|
4 |
|
5 |
-
# Function to
|
6 |
-
def
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
# Function to
|
11 |
-
def
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
# Function to
|
16 |
-
def
|
17 |
df = pd.read_csv(file.name)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
<h3 style="margin:0;">CSV and Image Viewer App</h3>
|
28 |
-
</div>
|
29 |
-
""")
|
30 |
-
|
31 |
-
# Image Upload Section
|
32 |
-
with gr.Row():
|
33 |
-
image_input = gr.File(label="Upload Image", type="filepath", file_count="single")
|
34 |
-
image_output = gr.Image(type="pil")
|
35 |
-
image_input.change(upload_image, inputs=image_input, outputs=image_output)
|
36 |
-
|
37 |
-
# CSV File Upload Section
|
38 |
-
with gr.Row():
|
39 |
-
file_input = gr.File(label="Upload CSV File", type="filepath")
|
40 |
-
file_output = gr.DataFrame()
|
41 |
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
|
|
48 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
|
5 |
+
# Function to calculate BMI
|
6 |
+
def calculate_bmi(weight, height):
|
7 |
+
height_in_meters = height / 100 # Convert cm to meters
|
8 |
+
bmi = weight / (height_in_meters ** 2)
|
9 |
+
|
10 |
+
if bmi < 18.5:
|
11 |
+
category = "Underweight"
|
12 |
+
elif 18.5 <= bmi < 24.9:
|
13 |
+
category = "Normal weight"
|
14 |
+
else:
|
15 |
+
category = "Overweight"
|
16 |
+
|
17 |
+
return bmi, category
|
18 |
|
19 |
+
# Function to estimate daily calorie intake based on activity level
|
20 |
+
def calorie_intake(age, gender, weight, height, activity_level):
|
21 |
+
if gender == "Male":
|
22 |
+
bmr = 10 * weight + 6.25 * height - 5 * age + 5
|
23 |
+
else:
|
24 |
+
bmr = 10 * weight + 6.25 * height - 5 * age - 161
|
25 |
+
|
26 |
+
activity_multiplier = {
|
27 |
+
"Sedentary": 1.2,
|
28 |
+
"Lightly active": 1.375,
|
29 |
+
"Moderately active": 1.55,
|
30 |
+
"Very active": 1.725,
|
31 |
+
"Super active": 1.9
|
32 |
+
}
|
33 |
+
|
34 |
+
calories_needed = bmr * activity_multiplier[activity_level]
|
35 |
+
return calories_needed
|
36 |
|
37 |
+
# Function to read the CSV file and calculate BMI & Calorie Intake for each user
|
38 |
+
def process_csv(file):
|
39 |
df = pd.read_csv(file.name)
|
40 |
+
results = []
|
41 |
+
|
42 |
+
for _, row in df.iterrows():
|
43 |
+
name = row["Name"]
|
44 |
+
age = row["Age"]
|
45 |
+
gender = row["Gender"]
|
46 |
+
height = row["Height_cm"]
|
47 |
+
weight = row["Weight_kg"]
|
48 |
+
activity_level = row["Activity_Level"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
bmi, bmi_category = calculate_bmi(weight, height)
|
51 |
+
calories = calorie_intake(age, gender, weight, height, activity_level)
|
52 |
|
53 |
+
results.append({
|
54 |
+
"Name": name,
|
55 |
+
"BMI": f"{bmi:.2f}",
|
56 |
+
"BMI Category": bmi_category,
|
57 |
+
"Daily Calorie Needs (kcal)": f"{calories:.0f}",
|
58 |
+
})
|
59 |
+
|
60 |
+
return pd.DataFrame(results)
|
61 |
+
|
62 |
+
# Create the Gradio interface
|
63 |
+
with gr.Blocks() as demo:
|
64 |
+
gr.Markdown("# Personal Health Tracker")
|
65 |
+
gr.Markdown("### Upload your CSV file to calculate BMI and daily calorie needs for each person.")
|
66 |
+
|
67 |
+
# File Upload
|
68 |
+
file_upload = gr.File(label="Upload CSV File", type="file")
|
69 |
+
|
70 |
+
# Output for the result
|
71 |
+
output = gr.DataFrame(headers=["Name", "BMI", "BMI Category", "Daily Calorie Needs (kcal)"])
|
72 |
+
|
73 |
+
# Button to trigger processing
|
74 |
+
process_button = gr.Button("Process CSV")
|
75 |
+
|
76 |
+
# Function trigger
|
77 |
+
process_button.click(fn=process_csv, inputs=[file_upload], outputs=[output])
|
78 |
|
79 |
+
# Launch the app
|
80 |
demo.launch()
|