File size: 7,852 Bytes
459923a
 
 
 
 
 
 
7e57864
459923a
 
 
7e57864
 
 
459923a
 
 
 
 
7e57864
 
 
 
459923a
 
7e57864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459923a
 
 
 
 
 
 
 
 
 
 
 
 
 
7e57864
459923a
7e57864
 
 
459923a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e57864
 
 
 
 
459923a
7e57864
 
 
 
 
 
 
 
459923a
 
7e57864
459923a
 
 
7e57864
459923a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torch
import numpy as np
from dataclasses import dataclass




#convert frame-numbers to timestamps in seconds
# w2v2 step size is about 20ms, or 50 frames per second
def f2s(fr):
    return fr/50

    
#------------------------------------------
# setup wav2vec2
#------------------------------------------

# important to know for CTC decoding - potentially language/model dependent
#model_word_separator = '|'
#model_blank_token = '[PAD]'
#is_MODEL_PATH="../models/LVL/wav2vec2-large-xlsr-53-icelandic-ep10-1000h"



class CTCAligner:
    
    def __init__(self, model_path,model_word_separator, model_blank_token):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        torch.random.manual_seed(0)
        
        self.model = Wav2Vec2ForCTC.from_pretrained(model_path).to(self.device)
        self.processor = Wav2Vec2Processor.from_pretrained(model_path)

        # build labels dict from a processor where it is not directly accessible
        max_labels = 100 # any reasonable number higher than vocab + extra + special tokens in any language used
        ixs = sorted(list(range(max_labels)),reverse=True)
        self.labels_dict = {self.processor.tokenizer.decode(n) or model_word_separator:n for n in ixs}
        
        self.blank_id = self.labels_dict[model_blank_token]
        self.model_word_separator = model_word_separator





#------------------------------------------
# forced alignment with ctc decoder
#   based on implementation of
#   https://pytorch.org/audio/main/tutorials/forced_alignment_tutorial.html
#------------------------------------------


# return the label class probability of each audio frame
# wav is the wav data already read in, NOT the file path.
def get_frame_probs(wav,aligner):
    with torch.inference_mode(): # similar to with torch.no_grad():
        input_values = aligner.processor(wav,sampling_rate=16000).input_values[0]
        input_values = torch.tensor(input_values, device=aligner.device).unsqueeze(0)
        emits =  aligner.model(input_values).logits
        emits = torch.log_softmax(emits, dim=-1)
    return emits[0].cpu().detach()


def get_trellis(emission, tokens, blank_id):
    
    num_frame = emission.size(0)
    num_tokens = len(tokens)
    trellis = torch.empty((num_frame + 1, num_tokens + 1))
    trellis[0, 0] = 0
    trellis[1:, 0] = torch.cumsum(emission[:, 0], 0) # len of this slice of trellis is len of audio frames)
    trellis[0, -num_tokens:] = -float("inf") # len of this slice of trellis is len of transcript tokens
    trellis[-num_tokens:, 0] = float("inf")
    for t in range(num_frame):
        trellis[t + 1, 1:] = torch.maximum(
            # Score for staying at the same token
            trellis[t, 1:] + emission[t, blank_id],
            # Score for changing to the next token
            trellis[t, :-1] + emission[t, tokens],
        )
    return trellis



@dataclass
class Point:
    token_index: int
    time_index: int
    score: float
    
@dataclass
class Segment:
    label: str
    start: int
    end: int
    score: float

    @property
    def mfaform(self):
        return f"{f2s(self.start)},{f2s(self.end)},{self.label}"

    @property
    def length(self):
        return self.end - self.start
    
    
    
def backtrack(trellis, emission, tokens, blank_id):
    # Note:
    # j and t are indices for trellis, which has extra dimensions
    # for time and tokens at the beginning.
    # When referring to time frame index `T` in trellis,
    # the corresponding index in emission is `T-1`.
    # Similarly, when referring to token index `J` in trellis,
    # the corresponding index in transcript is `J-1`.
    j = trellis.size(1) - 1
    t_start = torch.argmax(trellis[:, j]).item()
    
    path = []
    for t in range(t_start, 0, -1):
        # 1. Figure out if the current position was stay or change
        # `emission[J-1]` is the emission at time frame `J` of trellis dimension.
        # Score for token staying the same from time frame J-1 to T.
        stayed = trellis[t - 1, j] + emission[t - 1, blank_id]
        # Score for token changing from C-1 at T-1 to J at T.
        changed = trellis[t - 1, j - 1] + emission[t - 1, tokens[j - 1]]

        # 2. Store the path with frame-wise probability.
        prob = emission[t - 1, tokens[j - 1] if changed > stayed else 0].exp().item()
        # Return token index and time index in non-trellis coordinate.
        path.append(Point(j - 1, t - 1, prob))

        # 3. Update the token
        if changed > stayed:
            j -= 1
            if j == 0:
                break
    else:
        raise ValueError("Failed to align")
    return path[::-1]


def merge_repeats(path,transcript):
    i1, i2 = 0, 0
    segments = []
    while i1 < len(path):
        while i2 < len(path) and path[i1].token_index == path[i2].token_index: # while both path steps point to the same token index
            i2 += 1
        score = sum(path[k].score for k in range(i1, i2)) / (i2 - i1)
        segments.append( # when i2 finally switches to a different token,
            Segment(
                transcript[path[i1].token_index],# to the list of segments, append the token from i1
                path[i1].time_index, # time of the first path-point of that token
                path[i2 - 1].time_index + 1, # time of the final path-point for that token.
                score,
            )
        )
        i1 = i2
    return segments



def merge_words(segments, separator):
    words = []
    i1, i2 = 0, 0
    while i1 < len(segments):
        if i2 >= len(segments) or segments[i2].label == separator:
            if i1 != i2:
                segs = segments[i1:i2]
                word = "".join([seg.label for seg in segs])
                score = sum(seg.score * seg.length for seg in segs) / sum(seg.length for seg in segs)
                words.append(Segment(word, segments[i1].start, segments[i2 - 1].end, score))
            i1 = i2 + 1
            i2 = i1
        else:
            i2 += 1
    return words



#------------------------------------------
# handle etc.
#------------------------------------------


# generate mfa format for character (phone) and word alignments
# skip the word separator as it is not a phone
def mfalike(chars,wds,wsep):
	hed = ['Begin,End,Label,Type,Speaker\n']
	wlines = [f'{w.mfaform},words,000\n' for w in wds]
	slines = [f'{ch.mfaform},phones,000\n' for ch in chars if ch.label != wsep]
	return (''.join(hed+wlines+slines))
	
# generate basic exportable list format for character OR word alignments
# skip the word separator as it is not a phone
def basic(segs,wsep="|"):
    return [[s.label,f2s(s.start),f2s(s.end)] for s in segs if s.label != wsep]
	

# needs pad labels added to correctly time first segment
# and therefore add word sep character as placeholder in transcript
def prep_transcript(xcp, aligner):
    xcp = xcp.replace(' ', aligner.model_word_separator)
    label_ids = [aligner.labels_dict[c] for c in xcp]
    label_ids = [aligner.blank_id] +  label_ids + [aligner.blank_id]
    xcp = f'{ aligner.model_word_separator}{xcp}{aligner.model_word_separator}'
    return xcp,label_ids



def align(wav_data,transcript,aligner):
	norm_transcript,rec_label_ids = prep_transcript(transcript, aligner)
	emit = get_frame_probs(wav_data,aligner)
	trellis = get_trellis(emit, rec_label_ids,  aligner.blank_id)
	path = backtrack(trellis, emit, rec_label_ids,  aligner.blank_id)
	
	segments = merge_repeats(path,norm_transcript)
	words = merge_words(segments, aligner.model_word_separator)
	
	#segments = [s for s in segments if s[0] != model_word_separator]
	#return mfalike(segments,words,model_word_separator)
	return basic(words,aligner.model_word_separator), basic(segments,aligner.model_word_separator)