import gradio as gr import subprocess,os from datasets import load_dataset, Audio import corpora import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt def setup(): r0 = subprocess.run(["pwd"], capture_output=True, text=True) print('PWD::', r0.stdout) r1 = subprocess.run(["wget", "https://github.com/google/REAPER/archive/refs/heads/master.zip"], capture_output=True, text=True) print(r1.stdout) subprocess.run(["unzip", "./master.zip"]) subprocess.run(["mv", "REAPER-master", "REAPER"]) subprocess.run(["rm", "./master.zip"]) os.chdir('./REAPER') subprocess.run(["mkdir", "build"]) os.chdir('./build') r2 = subprocess.run(["cmake", ".."], capture_output=True, text=True) print(r2.stdout) r3 = subprocess.run(["make"], capture_output=True, text=True) print(r3.stdout) os.chdir('../..') r9 = subprocess.run(["ls", "-la"], capture_output=True, text=True) print('LS::', r9.stdout) #print('about to setup') #setup() def load_lang(langname): if langname=="Icelandic": ds = corpora.ds_i elif langname =="Faroese": ds = corpora.ds_f df = ds.data.to_pandas() df = df.drop(columns=['audio', 'speaker_id','duration']) return (df, df[:50]) def f1(): fig = plt.figure(figsize=(10,4)) plt.axline((0,0),slope=1,color="darkgray") plt.xlabel("Vowel length (ms)") plt.ylabel("Consonant length (ms)") return(fig) bl = gr.Blocks() with bl: lloadr = gr.Dropdown(["Faroese", "Icelandic"], label="Select language", info="Loading dataset can take several minutes") with gr.Row(): invisidata = gr.DataFrame(interactive=False, visible=False) databrowser = gr.DataFrame(wrap=True, max_rows=50, interactive=False, overflow_row_behaviour='paginate') btn1 = gr.Button(value="The random prosody button") btn1.style(full_width=False, size="sm") pl1 = gr.Plot() btn1.click(f1, [], pl1) lloadr.change(load_lang,lloadr,[invisidata,databrowser]) if __name__ == "__main__": bl.launch()