Spaces:
Running
Running
import streamlit as st | |
from llama_index.core import VectorStoreIndex | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
import chromadb | |
from llama_index.vector_stores.chroma import ChromaVectorStore | |
st.title("Infections - retriever") | |
db = chromadb.PersistentClient(path="./zakazenia") | |
chroma_collection = db.get_or_create_collection("zalacznik_nr12") | |
vector_store = ChromaVectorStore(chroma_collection=chroma_collection) | |
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") | |
# Indeks z vector store | |
index = VectorStoreIndex.from_vector_store(vector_store, embed_model=embed_model) | |
# Retriever bez LLM | |
retriever = index.as_retriever(similarity_top_k=1) | |
if "messages" not in st.session_state: | |
st.session_state.messages = [{"role": "assistant", "content": "Zadaj mi pytanie..."}] | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.write(message["content"]) | |
if input := st.chat_input(): | |
st.session_state.messages.append({"role": "user", "content": input}) | |
with st.chat_message("user"): | |
st.write(input) | |
if st.session_state.messages[-1]["role"] != "assistant": | |
with st.chat_message("assistant"): | |
with st.spinner("Czekaj, trwa wyszukiwanie..."): | |
results = retriever.retrieve(input) | |
content = "\n\n---\n\n".join([doc.text for doc in results]) | |
st.write(content) | |
st.session_state.messages.append({"role": "assistant", "content": content}) |