Spaces:
Sleeping
Sleeping
add app.py
Browse files
app.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
|
3 |
+
# from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
4 |
+
# from llama_index.core.node_parser import SentenceSplitter
|
5 |
+
# from llama_index.core.ingestion import IngestionPipeline
|
6 |
+
# import chromadb
|
7 |
+
# from llama_index.vector_stores.chroma import ChromaVectorStore
|
8 |
+
# from llama_index.llms.ollama import Ollama
|
9 |
+
|
10 |
+
|
11 |
+
# # Ustawienia strony
|
12 |
+
# st.title("Aplikacja z LlamaIndex")
|
13 |
+
|
14 |
+
|
15 |
+
# db = chromadb.PersistentClient(path="./zakazenia")
|
16 |
+
# chroma_collection = db.get_or_create_collection("zalacznik_nr12")
|
17 |
+
# vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
18 |
+
# embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
19 |
+
|
20 |
+
# # Utw贸rz pipeline do przetwarzania dokument贸w
|
21 |
+
# pipeline = IngestionPipeline(
|
22 |
+
# transformations=[
|
23 |
+
# SentenceSplitter(),
|
24 |
+
# embed_model,
|
25 |
+
# ],
|
26 |
+
# vector_store=vector_store
|
27 |
+
# )
|
28 |
+
|
29 |
+
# # Utw贸rz indeks
|
30 |
+
|
31 |
+
# index = VectorStoreIndex.from_vector_store(vector_store, embed_model=embed_model)
|
32 |
+
|
33 |
+
# # Utw贸rz silnik zapyta艅
|
34 |
+
# llm = Ollama(model="qwen2:7b")
|
35 |
+
# query_engine = index.as_query_engine(
|
36 |
+
# llm=llm,
|
37 |
+
# response_mode = 'compact')
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
# # Store LLM generated responses
|
42 |
+
# if "messages" not in st.session_state.keys():
|
43 |
+
# st.session_state.messages = [{"role": "assistant", "content": "Zadaj mi pytanie..."}]
|
44 |
+
|
45 |
+
# # Display chat messages
|
46 |
+
# for message in st.session_state.messages:
|
47 |
+
# with st.chat_message(message["role"]):
|
48 |
+
# st.write(message["content"])
|
49 |
+
|
50 |
+
# # User-provided prompt
|
51 |
+
# if input := st.chat_input():
|
52 |
+
# st.session_state.messages.append({"role": "user", "content": input})
|
53 |
+
# with st.chat_message("user"):
|
54 |
+
# st.write(input)
|
55 |
+
|
56 |
+
# # Generate a new response if last message is not from assistant
|
57 |
+
# if st.session_state.messages[-1]["role"] != "assistant":
|
58 |
+
# with st.chat_message("assistant"):
|
59 |
+
# with st.spinner("Czekaj, odpowied藕 jest generowana.."):
|
60 |
+
# response = query_engine.query(input)
|
61 |
+
|
62 |
+
# st.write(response.response)
|
63 |
+
# for node in response.source_nodes:
|
64 |
+
# st.write(node.score)
|
65 |
+
|
66 |
+
# message = {"role": "assistant", "content": response}
|
67 |
+
# st.session_state.messages.append(message)
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
import streamlit as st
|
72 |
+
from llama_index.core import VectorStoreIndex
|
73 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
74 |
+
from llama_index.core.node_parser import SentenceSplitter
|
75 |
+
from llama_index.core.ingestion import IngestionPipeline
|
76 |
+
import chromadb
|
77 |
+
from llama_index.vector_stores.chroma import ChromaVectorStore
|
78 |
+
from llama_index.llms.ollama import Ollama
|
79 |
+
|
80 |
+
# Ustawienia strony
|
81 |
+
st.title("Aplikacja z LlamaIndex")
|
82 |
+
|
83 |
+
db = chromadb.PersistentClient(path="./zakazenia")
|
84 |
+
chroma_collection = db.get_or_create_collection("zalacznik_nr12")
|
85 |
+
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
86 |
+
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
87 |
+
|
88 |
+
# Utw贸rz pipeline do przetwarzania dokument贸w
|
89 |
+
pipeline = IngestionPipeline(
|
90 |
+
transformations=[
|
91 |
+
SentenceSplitter(),
|
92 |
+
embed_model,
|
93 |
+
],
|
94 |
+
vector_store=vector_store
|
95 |
+
)
|
96 |
+
|
97 |
+
# Utw贸rz indeks
|
98 |
+
index = VectorStoreIndex.from_vector_store(vector_store, embed_model=embed_model)
|
99 |
+
|
100 |
+
# Utw贸rz silnik zapyta艅
|
101 |
+
llm = Ollama(model="qwen2:7b")
|
102 |
+
query_engine = index.as_query_engine(
|
103 |
+
llm=llm,
|
104 |
+
response_mode='compact')
|
105 |
+
|
106 |
+
# Store LLM generated responses
|
107 |
+
if "messages" not in st.session_state.keys():
|
108 |
+
st.session_state.messages = [{"role": "assistant", "content": "Zadaj mi pytanie..."}]
|
109 |
+
|
110 |
+
# Display chat messages
|
111 |
+
for message in st.session_state.messages:
|
112 |
+
with st.chat_message(message["role"]):
|
113 |
+
st.write(message["content"])
|
114 |
+
|
115 |
+
# User-provided prompt
|
116 |
+
if input := st.chat_input():
|
117 |
+
st.session_state.messages.append({"role": "user", "content": input})
|
118 |
+
with st.chat_message("user"):
|
119 |
+
st.write(input)
|
120 |
+
|
121 |
+
# Generate a new response if last message is not from assistant
|
122 |
+
if st.session_state.messages[-1]["role"] != "assistant":
|
123 |
+
with st.chat_message("assistant"):
|
124 |
+
with st.spinner("Czekaj, odpowied藕 jest generowana.."):
|
125 |
+
response = query_engine.query(input)
|
126 |
+
|
127 |
+
# Zbuduj tre艣膰 wiadomo艣ci z odpowiedzi膮 i score
|
128 |
+
content = str(response.response) # Upewnij si臋, 偶e response jest stringiem
|
129 |
+
if hasattr(response, 'source_nodes') and response.source_nodes: # Sprawd藕, czy source_nodes istnieje
|
130 |
+
# Dodaj score pierwszego w臋z艂a (je艣li istnieje)
|
131 |
+
content += f"\nScore: {response.source_nodes[0].score:.4f}" # Dodaj score
|
132 |
+
|
133 |
+
st.write(content) # Wy艣wietl ca艂膮 tre艣膰 w Streamlit
|
134 |
+
|
135 |
+
message = {"role": "assistant", "content": content} # Zapisz ca艂膮 tre艣膰 w wiadomo艣ci
|
136 |
+
st.session_state.messages.append(message)
|
137 |
+
|