Spaces:
Sleeping
Sleeping
only retriever
Browse files
app.py
CHANGED
@@ -1,137 +1,40 @@
|
|
1 |
-
# import streamlit as st
|
2 |
-
# from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
|
3 |
-
# from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
4 |
-
# from llama_index.core.node_parser import SentenceSplitter
|
5 |
-
# from llama_index.core.ingestion import IngestionPipeline
|
6 |
-
# import chromadb
|
7 |
-
# from llama_index.vector_stores.chroma import ChromaVectorStore
|
8 |
-
# from llama_index.llms.ollama import Ollama
|
9 |
-
|
10 |
-
|
11 |
-
# # Ustawienia strony
|
12 |
-
# st.title("Aplikacja z LlamaIndex")
|
13 |
-
|
14 |
-
|
15 |
-
# db = chromadb.PersistentClient(path="./zakazenia")
|
16 |
-
# chroma_collection = db.get_or_create_collection("zalacznik_nr12")
|
17 |
-
# vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
18 |
-
# embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
19 |
-
|
20 |
-
# # Utw贸rz pipeline do przetwarzania dokument贸w
|
21 |
-
# pipeline = IngestionPipeline(
|
22 |
-
# transformations=[
|
23 |
-
# SentenceSplitter(),
|
24 |
-
# embed_model,
|
25 |
-
# ],
|
26 |
-
# vector_store=vector_store
|
27 |
-
# )
|
28 |
-
|
29 |
-
# # Utw贸rz indeks
|
30 |
-
|
31 |
-
# index = VectorStoreIndex.from_vector_store(vector_store, embed_model=embed_model)
|
32 |
-
|
33 |
-
# # Utw贸rz silnik zapyta艅
|
34 |
-
# llm = Ollama(model="qwen2:7b")
|
35 |
-
# query_engine = index.as_query_engine(
|
36 |
-
# llm=llm,
|
37 |
-
# response_mode = 'compact')
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
# # Store LLM generated responses
|
42 |
-
# if "messages" not in st.session_state.keys():
|
43 |
-
# st.session_state.messages = [{"role": "assistant", "content": "Zadaj mi pytanie..."}]
|
44 |
-
|
45 |
-
# # Display chat messages
|
46 |
-
# for message in st.session_state.messages:
|
47 |
-
# with st.chat_message(message["role"]):
|
48 |
-
# st.write(message["content"])
|
49 |
-
|
50 |
-
# # User-provided prompt
|
51 |
-
# if input := st.chat_input():
|
52 |
-
# st.session_state.messages.append({"role": "user", "content": input})
|
53 |
-
# with st.chat_message("user"):
|
54 |
-
# st.write(input)
|
55 |
-
|
56 |
-
# # Generate a new response if last message is not from assistant
|
57 |
-
# if st.session_state.messages[-1]["role"] != "assistant":
|
58 |
-
# with st.chat_message("assistant"):
|
59 |
-
# with st.spinner("Czekaj, odpowied藕 jest generowana.."):
|
60 |
-
# response = query_engine.query(input)
|
61 |
-
|
62 |
-
# st.write(response.response)
|
63 |
-
# for node in response.source_nodes:
|
64 |
-
# st.write(node.score)
|
65 |
-
|
66 |
-
# message = {"role": "assistant", "content": response}
|
67 |
-
# st.session_state.messages.append(message)
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
import streamlit as st
|
72 |
from llama_index.core import VectorStoreIndex
|
73 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
74 |
-
from llama_index.core.node_parser import SentenceSplitter
|
75 |
-
from llama_index.core.ingestion import IngestionPipeline
|
76 |
import chromadb
|
77 |
from llama_index.vector_stores.chroma import ChromaVectorStore
|
78 |
-
from llama_index.llms.ollama import Ollama
|
79 |
|
80 |
-
|
81 |
-
st.title("Aplikacja z LlamaIndex")
|
82 |
|
83 |
db = chromadb.PersistentClient(path="./zakazenia")
|
84 |
chroma_collection = db.get_or_create_collection("zalacznik_nr12")
|
85 |
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
86 |
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
87 |
|
88 |
-
# Utw贸rz
|
89 |
-
pipeline = IngestionPipeline(
|
90 |
-
transformations=[
|
91 |
-
SentenceSplitter(),
|
92 |
-
embed_model,
|
93 |
-
],
|
94 |
-
vector_store=vector_store
|
95 |
-
)
|
96 |
-
|
97 |
-
# Utw贸rz indeks
|
98 |
index = VectorStoreIndex.from_vector_store(vector_store, embed_model=embed_model)
|
99 |
|
100 |
-
#
|
101 |
-
|
102 |
-
query_engine = index.as_query_engine(
|
103 |
-
llm=llm,
|
104 |
-
response_mode='compact')
|
105 |
|
106 |
-
|
107 |
-
if "messages" not in st.session_state.keys():
|
108 |
st.session_state.messages = [{"role": "assistant", "content": "Zadaj mi pytanie..."}]
|
109 |
|
110 |
-
# Display chat messages
|
111 |
for message in st.session_state.messages:
|
112 |
with st.chat_message(message["role"]):
|
113 |
st.write(message["content"])
|
114 |
|
115 |
-
# User-provided prompt
|
116 |
if input := st.chat_input():
|
117 |
st.session_state.messages.append({"role": "user", "content": input})
|
118 |
with st.chat_message("user"):
|
119 |
st.write(input)
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
# Dodaj score pierwszego w臋z艂a (je艣li istnieje)
|
131 |
-
content += f"\nScore: {response.source_nodes[0].score:.4f}" # Dodaj score
|
132 |
-
|
133 |
-
st.write(content) # Wy艣wietl ca艂膮 tre艣膰 w Streamlit
|
134 |
-
|
135 |
-
message = {"role": "assistant", "content": content} # Zapisz ca艂膮 tre艣膰 w wiadomo锟斤拷ci
|
136 |
-
st.session_state.messages.append(message)
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from llama_index.core import VectorStoreIndex
|
3 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
|
|
|
|
4 |
import chromadb
|
5 |
from llama_index.vector_stores.chroma import ChromaVectorStore
|
|
|
6 |
|
7 |
+
st.title("Infections - retriever")
|
|
|
8 |
|
9 |
db = chromadb.PersistentClient(path="./zakazenia")
|
10 |
chroma_collection = db.get_or_create_collection("zalacznik_nr12")
|
11 |
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
12 |
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
13 |
|
14 |
+
# Utw贸rz indeks z vector store
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
index = VectorStoreIndex.from_vector_store(vector_store, embed_model=embed_model)
|
16 |
|
17 |
+
# Zamiast query_engine z LLM, u偶yjemy retrievera bez LLM
|
18 |
+
retriever = index.as_retriever()
|
|
|
|
|
|
|
19 |
|
20 |
+
if "messages" not in st.session_state:
|
|
|
21 |
st.session_state.messages = [{"role": "assistant", "content": "Zadaj mi pytanie..."}]
|
22 |
|
|
|
23 |
for message in st.session_state.messages:
|
24 |
with st.chat_message(message["role"]):
|
25 |
st.write(message["content"])
|
26 |
|
|
|
27 |
if input := st.chat_input():
|
28 |
st.session_state.messages.append({"role": "user", "content": input})
|
29 |
with st.chat_message("user"):
|
30 |
st.write(input)
|
31 |
|
32 |
+
if st.session_state.messages[-1]["role"] != "assistant":
|
33 |
+
with st.chat_message("assistant"):
|
34 |
+
with st.spinner("Czekaj, trwa wyszukiwanie..."):
|
35 |
+
# Pobierz najtrafniejsze dokumenty (np. top 3)
|
36 |
+
results = retriever.retrieve(input)
|
37 |
+
# Po艂膮cz teksty wynik贸w w jedn膮 odpowied藕
|
38 |
+
content = "\n\n---\n\n".join([doc.text for doc in results])
|
39 |
+
st.write(content)
|
40 |
+
st.session_state.messages.append({"role": "assistant", "content": content})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
zakazenia/cc6dc5d8-2276-401b-914e-315f2937cad1/data_level0.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d3c9fd302f000d7790aa403c2d0d8fec363fe46f30b07d53020b6e33b22435a9
|
3 |
-
size 1676000
|
|
|
|
|
|
|
|
zakazenia/cc6dc5d8-2276-401b-914e-315f2937cad1/header.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e87a1dc8bcae6f2c4bea6d5dd5005454d4dace8637dae29bff3c037ea771411e
|
3 |
-
size 100
|
|
|
|
|
|
|
|
zakazenia/cc6dc5d8-2276-401b-914e-315f2937cad1/length.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:5cd1d7b9602564894c70a526b6a5ccba7730906699e5c44683d3bd445810ad9e
|
3 |
-
size 4000
|
|
|
|
|
|
|
|
zakazenia/cc6dc5d8-2276-401b-914e-315f2937cad1/link_lists.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
|
3 |
-
size 0
|
|
|
|
|
|
|
|