File size: 2,943 Bytes
6e2b09a
0b6c3ef
6e2b09a
 
 
 
 
 
 
f75a474
0b6c3ef
 
6e2b09a
 
 
 
0b6c3ef
 
cc9711e
8ca775c
cc9711e
 
 
 
 
 
 
 
 
 
 
 
 
 
f75a474
 
 
 
 
 
 
 
 
 
 
 
cc9711e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f75a474
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import streamlit as st
from llama_index.core import VectorStoreIndex
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.ingestion import IngestionPipeline
import chromadb
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.llms.ollama import Ollama

from llama_index.llms.huggingface import HuggingFaceLLM

from llama_index.core import Settings

# Ustawienia strony
st.title("Aplikacja z LlamaIndex")

db = chromadb.PersistentClient(path="./abc")
chroma_collection = db.get_or_create_collection("pomoc_ukrainie")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")

# Utw贸rz pipeline do przetwarzania dokument贸w
pipeline = IngestionPipeline(
    transformations=[
        SentenceSplitter(),
        embed_model,
    ],
    vector_store=vector_store
)

# Utw贸rz indeks
index = VectorStoreIndex.from_vector_store(vector_store, embed_model=embed_model)

# Utw贸rz silnik zapyta艅
# huggingface
from transformers import AutoTokenizer

# Settings.tokenizer = AutoTokenizer.from_pretrained(
#     "Qwen/Qwen2-7B-Instruct"
# )

# Load the correct tokenizer for Qwen/Qwen2-7B-Instruct
tokeni = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B")

llm = HuggingFaceLLM(model_name="Qwen/Qwen2-0.5B", tokenizer=tokeni)
# print(llm._tokenizer)
query_engine = index.as_query_engine(
    llm=llm,
    response_mode='compact')

# Store LLM generated responses
if "messages" not in st.session_state.keys():
    st.session_state.messages = [{"role": "assistant", "content": "Zadaj mi pytanie..."}]

# Display chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])

# User-provided prompt
if input := st.chat_input():
    st.session_state.messages.append({"role": "user", "content": input})
    with st.chat_message("user"):
        st.write(input)

# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
    with st.chat_message("assistant"):
        with st.spinner("Czekaj, odpowied藕 jest generowana.."):
            response = query_engine.query(input)

            # Zbuduj tre艣膰 wiadomo艣ci z odpowiedzi膮 i score
            content = str(response.response)  # Upewnij si臋, 偶e response jest stringiem
            if hasattr(response, 'source_nodes') and response.source_nodes:  # Sprawd藕, czy source_nodes istnieje
                # Dodaj score pierwszego w臋z艂a (je艣li istnieje)
                content += f"\nScore: {response.source_nodes[0].score:.4f}"  # Dodaj score

            st.write(content)  # Wy艣wietl ca艂膮 tre艣膰 w Streamlit

    message = {"role": "assistant", "content": content}  # Zapisz ca艂膮 tre艣膰 w wiadomo艣ci
    st.session_state.messages.append(message)