PICK / app.py
clui's picture
trust_remote_code=True
42c830e verified
raw
history blame
3.13 kB
import streamlit as st
from llama_index.core import VectorStoreIndex
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.ingestion import IngestionPipeline
import chromadb
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.llms.ollama import Ollama
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core import Settings
import time
# Ustawienia strony
st.title("Aplikacja z LlamaIndex")
db = chromadb.PersistentClient(path="./abc")
chroma_collection = db.get_or_create_collection("pomoc_ukrainie")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5", device="cpu")
# Utw贸rz indeks
index = VectorStoreIndex.from_vector_store(vector_store, embed_model=embed_model)
# Utw贸rz silnik zapyta艅
# Load the correct tokenizer and LLM
from transformers import AutoTokenizer
llm = HuggingFaceLLM(
model_name="PrunaAI/eryk-mazus-polka-1.1b-bnb-4bit-smashed", # Ma艂y model 1.3B
tokenizer=AutoTokenizer.from_pretrained("eryk-mazus/polka-1.1b"),
trust_remote_code=True,
device_map="auto"
# model_kwargs={
# "quantization_config": quantization_config,
# }
)
#Query Engine
query_engine = index.as_query_engine(
llm=llm,
response_mode='compact')
# app gui
# Store LLM generated responses
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant", "content": "Zadaj mi pytanie..."}]
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# User-provided prompt
if input := st.chat_input():
st.session_state.messages.append({"role": "user", "content": input})
with st.chat_message("user"):
st.write(input)
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Czekaj, odpowied藕 jest generowana.."):
start_time = time.time() # Start timing
response = query_engine.query(input)
end_time = time.time() # End timing
generation_time = end_time - start_time
# Zbuduj tre艣膰 wiadomo艣ci z odpowiedzi膮 i score
content = str(response.response) # Upewnij si臋, 偶e response jest stringiem
if hasattr(response, 'source_nodes') and response.source_nodes: # Sprawd藕, czy source_nodes istnieje
# Dodaj score pierwszego w臋z艂a (je艣li istnieje)
content += f"\nScore: {response.source_nodes[0].score:.4f}" # Dodaj score
# Add generation time
content += f"\nCzas generowania: {generation_time:.2f} sekund"
st.write(content) # Wy艣wietl ca艂膮 tre艣膰 w Streamlit
message = {"role": "assistant", "content": content} # Zapisz ca艂膮 tre艣膰 w wiadomo艣ci
st.session_state.messages.append(message)