clui commited on
Commit
027f581
verified
1 Parent(s): fb66121

add device 'cpu' to embed model

Browse files
Files changed (1) hide show
  1. app.py +2 -7
app.py CHANGED
@@ -17,7 +17,7 @@ st.title("Aplikacja z LlamaIndex")
17
  db = chromadb.PersistentClient(path="./abc")
18
  chroma_collection = db.get_or_create_collection("pomoc_ukrainie")
19
  vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
20
- embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
21
 
22
  # Utw贸rz pipeline do przetwarzania dokument贸w
23
  pipeline = IngestionPipeline(
@@ -32,18 +32,13 @@ pipeline = IngestionPipeline(
32
  index = VectorStoreIndex.from_vector_store(vector_store, embed_model=embed_model)
33
 
34
  # Utw贸rz silnik zapyta艅
35
- # huggingface
36
  from transformers import AutoTokenizer
37
 
38
- # Settings.tokenizer = AutoTokenizer.from_pretrained(
39
- # "Qwen/Qwen2-7B-Instruct"
40
- # )
41
-
42
  # Load the correct tokenizer for Qwen/Qwen2-7B-Instruct
43
  tokeni = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B")
44
 
45
  llm = HuggingFaceLLM(model_name="Qwen/Qwen2-0.5B", tokenizer=tokeni)
46
- # print(llm._tokenizer)
47
  query_engine = index.as_query_engine(
48
  llm=llm,
49
  response_mode='compact')
 
17
  db = chromadb.PersistentClient(path="./abc")
18
  chroma_collection = db.get_or_create_collection("pomoc_ukrainie")
19
  vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
20
+ embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5", device="cpu")
21
 
22
  # Utw贸rz pipeline do przetwarzania dokument贸w
23
  pipeline = IngestionPipeline(
 
32
  index = VectorStoreIndex.from_vector_store(vector_store, embed_model=embed_model)
33
 
34
  # Utw贸rz silnik zapyta艅
 
35
  from transformers import AutoTokenizer
36
 
 
 
 
 
37
  # Load the correct tokenizer for Qwen/Qwen2-7B-Instruct
38
  tokeni = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B")
39
 
40
  llm = HuggingFaceLLM(model_name="Qwen/Qwen2-0.5B", tokenizer=tokeni)
41
+
42
  query_engine = index.as_query_engine(
43
  llm=llm,
44
  response_mode='compact')