Update app.py
Browse files
app.py
CHANGED
@@ -15,17 +15,18 @@ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
|
15 |
# Load the Lora model
|
16 |
model = PeftModel.from_pretrained(model, peft_model_id)
|
17 |
|
|
|
18 |
|
19 |
def make_inference(my_cover_letter, job_posting):
|
20 |
batch = tokenizer(
|
21 |
-
|
22 |
return_tensors="pt",
|
23 |
)
|
24 |
|
25 |
with torch.cuda.amp.autocast():
|
26 |
output_tokens = model.generate(**batch, max_new_tokens=300)
|
27 |
|
28 |
-
return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
29 |
|
30 |
|
31 |
if __name__ == "__main__":
|
|
|
15 |
# Load the Lora model
|
16 |
model = PeftModel.from_pretrained(model, peft_model_id)
|
17 |
|
18 |
+
prompt = f"Adapt my Cover Letter ```\n{my_cover_letter}\n```\nto this Job Posting\n```\n{job_posting}\n```"
|
19 |
|
20 |
def make_inference(my_cover_letter, job_posting):
|
21 |
batch = tokenizer(
|
22 |
+
prompt,
|
23 |
return_tensors="pt",
|
24 |
)
|
25 |
|
26 |
with torch.cuda.amp.autocast():
|
27 |
output_tokens = model.generate(**batch, max_new_tokens=300)
|
28 |
|
29 |
+
return tokenizer.decode(output_tokens[0], skip_special_tokens=True).replace(prompt, '')
|
30 |
|
31 |
|
32 |
if __name__ == "__main__":
|