|
import gradio as gr |
|
import torch |
|
from transformers import AutoFeatureExtractor, AutoModelForImageClassification |
|
import os |
|
from numpy import exp |
|
import pandas as pd |
|
from PIL import Image |
|
import urllib.request |
|
import uuid |
|
|
|
uid = uuid.uuid4() |
|
|
|
models = [ |
|
"cmckinle/sdxl-flux-detector", |
|
"umm-maybe/AI-image-detector", |
|
"Organika/sdxl-detector", |
|
] |
|
|
|
fin_sum = [] |
|
|
|
def softmax(vector): |
|
e = exp(vector) |
|
return e / e.sum() |
|
|
|
def aiornot(image, model_index): |
|
labels = ["AI", "Real"] |
|
mod = models[model_index] |
|
feature_extractor = AutoFeatureExtractor.from_pretrained(mod) |
|
model = AutoModelForImageClassification.from_pretrained(mod) |
|
input = feature_extractor(image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**input) |
|
logits = outputs.logits |
|
probability = softmax(logits) |
|
px = pd.DataFrame(probability.numpy()) |
|
|
|
prediction = logits.argmax(-1).item() |
|
label = labels[prediction] |
|
|
|
html_out = f""" |
|
<h1>This image is likely: {label}</h1><br><h3> |
|
Probabilities:<br> |
|
Real: {px[1][0]}<br> |
|
AI: {px[0][0]}""" |
|
|
|
results = {} |
|
for idx, result in enumerate(px): |
|
results[labels[idx]] = px[idx][0] |
|
|
|
fin_sum.append(results) |
|
return gr.HTML.update(html_out), results |
|
|
|
def load_url(url): |
|
try: |
|
urllib.request.urlretrieve(f'{url}', f"{uid}tmp_im.png") |
|
image = Image.open(f"{uid}tmp_im.png") |
|
mes = "Image Loaded" |
|
except Exception as e: |
|
image = None |
|
mes = f"Image not Found<br>Error: {e}" |
|
return image, mes |
|
|
|
def tot_prob(): |
|
try: |
|
fin_out = sum([result["Real"] for result in fin_sum]) / len(fin_sum) |
|
fin_sub = 1 - fin_out |
|
out = { |
|
"Real": f"{fin_out:.2%}", |
|
"AI": f"{fin_sub:.2%}" |
|
} |
|
return out |
|
except Exception as e: |
|
print(e) |
|
return None |
|
|
|
def fin_clear(): |
|
fin_sum.clear() |
|
return None |
|
|
|
with gr.Blocks() as app: |
|
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)</h4></center>""") |
|
inp = gr.Image(type='pil') |
|
in_url = gr.Textbox(label="Image URL") |
|
load_btn = gr.Button("Load URL") |
|
btn = gr.Button("Detect AI") |
|
mes = gr.HTML("""""") |
|
|
|
fin = gr.Label(label="Final Probability") |
|
outp0 = gr.HTML("""""") |
|
outp1 = gr.HTML("""""") |
|
outp2 = gr.HTML("""""") |
|
|
|
load_btn.click(load_url, in_url, [inp, mes]) |
|
|
|
btn.click(fin_clear, None, fin, show_progress=False) |
|
btn.click(lambda img: aiornot(img, 0), inp, [outp0]).then(tot_prob, None, fin, show_progress=False) |
|
btn.click(lambda img: aiornot(img, 1), inp, [outp1]).then(tot_prob, None, fin, show_progress=False) |
|
btn.click(lambda img: aiornot(img, 2), inp, [outp2]).then(tot_prob, None, fin, show_progress=False) |
|
|
|
app.launch(show_api=False, max_threads=24) |
|
|