File size: 10,302 Bytes
23cf930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15cffc9
 
 
 
23cf930
15cffc9
 
23cf930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15cffc9
 
 
 
 
 
 
 
 
23cf930
 
 
 
 
 
 
 
15cffc9
 
23cf930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15cffc9
 
 
 
23cf930
15cffc9
23cf930
 
 
 
15cffc9
23cf930
 
 
 
 
15cffc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23cf930
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
import os
import zipfile
import shutil
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc, ConfusionMatrixDisplay
from PIL import Image
import tempfile
import numpy as np
import urllib.request
import base64
from io import BytesIO
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas

MODEL_NAME = "cmckinle/sdxl-flux-detector"
LABELS = ["AI", "Real"]

class AIDetector:
    def __init__(self):
        self.pipe = pipeline("image-classification", MODEL_NAME)
        self.feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
        self.model = AutoModelForImageClassification.from_pretrained(MODEL_NAME)

    @staticmethod
    def softmax(vector):
        e = np.exp(vector - np.max(vector))
        return e / e.sum()

    def predict(self, image):
        inputs = self.feature_extractor(image, return_tensors="pt")
        with torch.no_grad():
            outputs = self.model(**inputs)
            logits = outputs.logits
            probabilities = self.softmax(logits.numpy())
        
        prediction = logits.argmax(-1).item()
        label = LABELS[prediction]
        
        results = {label: float(prob) for label, prob in zip(LABELS, probabilities[0])}
        
        return label, results

def process_zip(zip_file):
    temp_dir = tempfile.mkdtemp()
    
    try:
        with zipfile.ZipFile(zip_file.name, 'r') as z:
            file_list = z.namelist()
            if not ('real/' in file_list and 'ai/' in file_list):
                raise ValueError("Zip file must contain 'real' and 'ai' folders")
            
            z.extractall(temp_dir)
        
        return evaluate_model(temp_dir)
    
    except Exception as e:
        raise gr.Error(f"Error processing zip file: {str(e)}")
    
    finally:
        shutil.rmtree(temp_dir)

def process_files(ai_files, real_files):
    temp_dir = tempfile.mkdtemp()
    try:
        ai_folder = os.path.join(temp_dir, 'ai')
        os.makedirs(ai_folder)
        for file in ai_files:
            shutil.copy(file.name, os.path.join(ai_folder, os.path.basename(file.name)))

        real_folder = os.path.join(temp_dir, 'real')
        os.makedirs(real_folder)
        for file in real_files:
            shutil.copy(file.name, os.path.join(real_folder, os.path.basename(file.name)))

        return evaluate_model(temp_dir)
    except Exception as e:
        raise gr.Error(f"Error processing individual files: {str(e)}")
    finally:
        shutil.rmtree(temp_dir)

def evaluate_model(temp_dir):
    labels, preds, images = [], [], []
    false_positives, false_negatives = [], []
    detector = AIDetector()
    
    total_images = sum(len(files) for _, _, files in os.walk(temp_dir))
    processed_images = 0
    
    for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]:
        folder_path = os.path.join(temp_dir, folder_name)
        if not os.path.exists(folder_path):
            raise ValueError(f"Folder not found: {folder_path}")
        
        for img_name in os.listdir(folder_path):
            img_path = os.path.join(folder_path, img_name)
            try:
                with Image.open(img_path).convert("RGB") as img:
                    _, prediction = detector.predict(img)
                
                pred_label = 0 if prediction["AI"] > prediction["Real"] else 1
                
                preds.append(pred_label)
                labels.append(ground_truth_label)
                images.append(img_name)

                if pred_label != ground_truth_label:
                    with open(img_path, "rb") as img_file:
                        img_data = base64.b64encode(img_file.read()).decode()
                    if pred_label == 1 and ground_truth_label == 0:
                        false_positives.append((img_name, img_data))
                    elif pred_label == 0 and ground_truth_label == 1:
                        false_negatives.append((img_name, img_data))

            except Exception as e:
                print(f"Error processing image {img_name}: {e}")
            
            processed_images += 1
            gr.Progress(processed_images / total_images)
    
    return calculate_metrics(labels, preds, false_positives, false_negatives)

def calculate_metrics(labels, preds, false_positives, false_negatives):
    cm = confusion_matrix(labels, preds)
    accuracy = accuracy_score(labels, preds)
    roc_score = roc_auc_score(labels, preds)
    report_html = format_classification_report(labels, preds)
    fpr, tpr, _ = roc_curve(labels, preds)
    roc_auc = auc(fpr, tpr)

    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
    
    ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=LABELS).plot(cmap=plt.cm.Blues, ax=ax1)
    ax1.set_title("Confusion Matrix")
    
    ax2.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
    ax2.plot([0, 1], [0, 1], color='gray', linestyle='--')
    ax2.set_xlim([0.0, 1.0])
    ax2.set_ylim([0.0, 1.05])
    ax2.set_xlabel('False Positive Rate')
    ax2.set_ylabel('True Positive Rate')
    ax2.set_title('ROC Curve')
    ax2.legend(loc="lower right")
    
    plt.tight_layout()

    fp_fn_html = create_fp_fn_html(false_positives, false_negatives)

    return accuracy, roc_score, report_html, fig, fp_fn_html

def format_classification_report(labels, preds):
    report_dict = classification_report(labels, preds, output_dict=True)
    
    html = """
    <table class="report-table">
        <tr>
            <th>Class</th>
            <th>Precision</th>
            <th>Recall</th>
            <th>F1-Score</th>
            <th>Support</th>
        </tr>
    """
    
    for class_name in ['0', '1']:
        html += f"""
        <tr>
            <td>{class_name}</td>
            <td>{report_dict[class_name]['precision']:.2f}</td>
            <td>{report_dict[class_name]['recall']:.2f}</td>
            <td>{report_dict[class_name]['f1-score']:.2f}</td>
            <td>{report_dict[class_name]['support']}</td>
        </tr>
        """
    
    html += f"""
        <tr>
            <td>Accuracy</td>
            <td colspan="3">{report_dict['accuracy']:.2f}</td>
            <td>{report_dict['macro avg']['support']}</td>
        </tr>
    </table>
    """
    
    return html

def create_fp_fn_html(false_positives, false_negatives):
    html = "<div class='image-grid'>"
    for img_name, img_data in false_positives + false_negatives:
        html += f"""
        <div class="image-item">
            <img src="data:image/jpeg;base64,{img_data}" alt="{img_name}">
            <p>{img_name}</p>
        </div>
        """
    return html

def generate_pdf(accuracy, roc_score, report_html, confusion_matrix_plot):
    buffer = BytesIO()
    c = canvas.Canvas(buffer, pagesize=letter)
    
    c.drawString(100, 750, f"Model Results")
    c.drawString(100, 730, f"Accuracy: {accuracy:.2f}")
    c.drawString(100, 710, f"ROC Score: {roc_score:.2f}")
    
    y_position = 690
    for line in report_html.split('<tr>')[2:]:
        if y_position < 50:
            c.showPage()
            y_position = 750
        c.drawString(100, y_position, line.strip())
        y_position -= 20

    img_buffer = BytesIO()
    confusion_matrix_plot.savefig(img_buffer, format="png")
    img_buffer.seek(0)
    c.drawImage(img_buffer, 100, y_position - 250, width=400, height=300)
    
    c.save()
    buffer.seek(0)
    return buffer

detector = AIDetector()

def create_gradio_interface():
    with gr.Blocks() as app:
        gr.Markdown("""<center><h1>AI Image Detector</h1></center>""")

        with gr.Tabs():
            with gr.Tab("Single Image Detection"):
                inp = gr.Image(type='pil')
                in_url = gr.Textbox(label="Image URL")
                load_btn = gr.Button("Load URL")
                btn = gr.Button("Detect AI")
                message = gr.HTML()

                output_html = gr.HTML()
                output_label = gr.Label(label="Output")

            with gr.Tab("Batch Image Processing"):
                zip_file = gr.File(label="Upload Zip", file_types=[".zip"], file_count="single")
                zip_process_btn = gr.Button("Process Zip")

                ai_files = gr.File(label="Upload AI Images", file_types=["image"], file_count="multiple")
                real_files = gr.File(label="Upload Real Images", file_types=["image"], file_count="multiple")
                individual_process_btn = gr.Button("Process Individual Files")

                output_acc = gr.Label(label="Accuracy")
                output_roc = gr.Label(label="ROC Score")
                output_report = gr.HTML(label="Classification Report")
                output_plots = gr.Plot(label="Confusion Matrix and ROC Curve")
                output_fp_fn = gr.HTML(label="False Positives and Negatives")

                download_pdf_btn = gr.Button("Download Results as PDF")
                pdf_output = gr.File(label="Download PDF", visible=False)

                reset_btn = gr.Button("Reset")

        load_btn.click(load_url, in_url, [inp, message])
        btn.click(lambda img: detector.predict(img), inp, [output_html, output_label])

        def on_download_pdf(accuracy, roc_score, report_html, confusion_matrix_plot):
            pdf_buffer = generate_pdf(accuracy, roc_score, report_html, confusion_matrix_plot)
            pdf_buffer.seek(0)
            return pdf_buffer

        download_pdf_btn.click(
            on_download_pdf,
            inputs=[output_acc, output_roc, output_report, output_plots],
            outputs=pdf_output
        )

        zip_process_btn.click(
            process_zip,
            zip_file,
            [output_acc, output_roc, output_report, output_plots, output_fp_fn]
        )

        individual_process_btn.click(
            process_files,
            [ai_files, real_files],
            [output_acc, output_roc, output_report, output_plots, output_fp_fn]
        )

    return app

if __name__ == "__main__":
    app = create_gradio_interface()
    app.launch(show_api=False, max_threads=24, show_error=True)