Spaces:
Running
Running
File size: 10,302 Bytes
23cf930 15cffc9 23cf930 15cffc9 23cf930 15cffc9 23cf930 15cffc9 23cf930 15cffc9 23cf930 15cffc9 23cf930 15cffc9 23cf930 15cffc9 23cf930 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
import os
import zipfile
import shutil
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc, ConfusionMatrixDisplay
from PIL import Image
import tempfile
import numpy as np
import urllib.request
import base64
from io import BytesIO
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
MODEL_NAME = "cmckinle/sdxl-flux-detector"
LABELS = ["AI", "Real"]
class AIDetector:
def __init__(self):
self.pipe = pipeline("image-classification", MODEL_NAME)
self.feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
self.model = AutoModelForImageClassification.from_pretrained(MODEL_NAME)
@staticmethod
def softmax(vector):
e = np.exp(vector - np.max(vector))
return e / e.sum()
def predict(self, image):
inputs = self.feature_extractor(image, return_tensors="pt")
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probabilities = self.softmax(logits.numpy())
prediction = logits.argmax(-1).item()
label = LABELS[prediction]
results = {label: float(prob) for label, prob in zip(LABELS, probabilities[0])}
return label, results
def process_zip(zip_file):
temp_dir = tempfile.mkdtemp()
try:
with zipfile.ZipFile(zip_file.name, 'r') as z:
file_list = z.namelist()
if not ('real/' in file_list and 'ai/' in file_list):
raise ValueError("Zip file must contain 'real' and 'ai' folders")
z.extractall(temp_dir)
return evaluate_model(temp_dir)
except Exception as e:
raise gr.Error(f"Error processing zip file: {str(e)}")
finally:
shutil.rmtree(temp_dir)
def process_files(ai_files, real_files):
temp_dir = tempfile.mkdtemp()
try:
ai_folder = os.path.join(temp_dir, 'ai')
os.makedirs(ai_folder)
for file in ai_files:
shutil.copy(file.name, os.path.join(ai_folder, os.path.basename(file.name)))
real_folder = os.path.join(temp_dir, 'real')
os.makedirs(real_folder)
for file in real_files:
shutil.copy(file.name, os.path.join(real_folder, os.path.basename(file.name)))
return evaluate_model(temp_dir)
except Exception as e:
raise gr.Error(f"Error processing individual files: {str(e)}")
finally:
shutil.rmtree(temp_dir)
def evaluate_model(temp_dir):
labels, preds, images = [], [], []
false_positives, false_negatives = [], []
detector = AIDetector()
total_images = sum(len(files) for _, _, files in os.walk(temp_dir))
processed_images = 0
for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]:
folder_path = os.path.join(temp_dir, folder_name)
if not os.path.exists(folder_path):
raise ValueError(f"Folder not found: {folder_path}")
for img_name in os.listdir(folder_path):
img_path = os.path.join(folder_path, img_name)
try:
with Image.open(img_path).convert("RGB") as img:
_, prediction = detector.predict(img)
pred_label = 0 if prediction["AI"] > prediction["Real"] else 1
preds.append(pred_label)
labels.append(ground_truth_label)
images.append(img_name)
if pred_label != ground_truth_label:
with open(img_path, "rb") as img_file:
img_data = base64.b64encode(img_file.read()).decode()
if pred_label == 1 and ground_truth_label == 0:
false_positives.append((img_name, img_data))
elif pred_label == 0 and ground_truth_label == 1:
false_negatives.append((img_name, img_data))
except Exception as e:
print(f"Error processing image {img_name}: {e}")
processed_images += 1
gr.Progress(processed_images / total_images)
return calculate_metrics(labels, preds, false_positives, false_negatives)
def calculate_metrics(labels, preds, false_positives, false_negatives):
cm = confusion_matrix(labels, preds)
accuracy = accuracy_score(labels, preds)
roc_score = roc_auc_score(labels, preds)
report_html = format_classification_report(labels, preds)
fpr, tpr, _ = roc_curve(labels, preds)
roc_auc = auc(fpr, tpr)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=LABELS).plot(cmap=plt.cm.Blues, ax=ax1)
ax1.set_title("Confusion Matrix")
ax2.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
ax2.plot([0, 1], [0, 1], color='gray', linestyle='--')
ax2.set_xlim([0.0, 1.0])
ax2.set_ylim([0.0, 1.05])
ax2.set_xlabel('False Positive Rate')
ax2.set_ylabel('True Positive Rate')
ax2.set_title('ROC Curve')
ax2.legend(loc="lower right")
plt.tight_layout()
fp_fn_html = create_fp_fn_html(false_positives, false_negatives)
return accuracy, roc_score, report_html, fig, fp_fn_html
def format_classification_report(labels, preds):
report_dict = classification_report(labels, preds, output_dict=True)
html = """
<table class="report-table">
<tr>
<th>Class</th>
<th>Precision</th>
<th>Recall</th>
<th>F1-Score</th>
<th>Support</th>
</tr>
"""
for class_name in ['0', '1']:
html += f"""
<tr>
<td>{class_name}</td>
<td>{report_dict[class_name]['precision']:.2f}</td>
<td>{report_dict[class_name]['recall']:.2f}</td>
<td>{report_dict[class_name]['f1-score']:.2f}</td>
<td>{report_dict[class_name]['support']}</td>
</tr>
"""
html += f"""
<tr>
<td>Accuracy</td>
<td colspan="3">{report_dict['accuracy']:.2f}</td>
<td>{report_dict['macro avg']['support']}</td>
</tr>
</table>
"""
return html
def create_fp_fn_html(false_positives, false_negatives):
html = "<div class='image-grid'>"
for img_name, img_data in false_positives + false_negatives:
html += f"""
<div class="image-item">
<img src="data:image/jpeg;base64,{img_data}" alt="{img_name}">
<p>{img_name}</p>
</div>
"""
return html
def generate_pdf(accuracy, roc_score, report_html, confusion_matrix_plot):
buffer = BytesIO()
c = canvas.Canvas(buffer, pagesize=letter)
c.drawString(100, 750, f"Model Results")
c.drawString(100, 730, f"Accuracy: {accuracy:.2f}")
c.drawString(100, 710, f"ROC Score: {roc_score:.2f}")
y_position = 690
for line in report_html.split('<tr>')[2:]:
if y_position < 50:
c.showPage()
y_position = 750
c.drawString(100, y_position, line.strip())
y_position -= 20
img_buffer = BytesIO()
confusion_matrix_plot.savefig(img_buffer, format="png")
img_buffer.seek(0)
c.drawImage(img_buffer, 100, y_position - 250, width=400, height=300)
c.save()
buffer.seek(0)
return buffer
detector = AIDetector()
def create_gradio_interface():
with gr.Blocks() as app:
gr.Markdown("""<center><h1>AI Image Detector</h1></center>""")
with gr.Tabs():
with gr.Tab("Single Image Detection"):
inp = gr.Image(type='pil')
in_url = gr.Textbox(label="Image URL")
load_btn = gr.Button("Load URL")
btn = gr.Button("Detect AI")
message = gr.HTML()
output_html = gr.HTML()
output_label = gr.Label(label="Output")
with gr.Tab("Batch Image Processing"):
zip_file = gr.File(label="Upload Zip", file_types=[".zip"], file_count="single")
zip_process_btn = gr.Button("Process Zip")
ai_files = gr.File(label="Upload AI Images", file_types=["image"], file_count="multiple")
real_files = gr.File(label="Upload Real Images", file_types=["image"], file_count="multiple")
individual_process_btn = gr.Button("Process Individual Files")
output_acc = gr.Label(label="Accuracy")
output_roc = gr.Label(label="ROC Score")
output_report = gr.HTML(label="Classification Report")
output_plots = gr.Plot(label="Confusion Matrix and ROC Curve")
output_fp_fn = gr.HTML(label="False Positives and Negatives")
download_pdf_btn = gr.Button("Download Results as PDF")
pdf_output = gr.File(label="Download PDF", visible=False)
reset_btn = gr.Button("Reset")
load_btn.click(load_url, in_url, [inp, message])
btn.click(lambda img: detector.predict(img), inp, [output_html, output_label])
def on_download_pdf(accuracy, roc_score, report_html, confusion_matrix_plot):
pdf_buffer = generate_pdf(accuracy, roc_score, report_html, confusion_matrix_plot)
pdf_buffer.seek(0)
return pdf_buffer
download_pdf_btn.click(
on_download_pdf,
inputs=[output_acc, output_roc, output_report, output_plots],
outputs=pdf_output
)
zip_process_btn.click(
process_zip,
zip_file,
[output_acc, output_roc, output_report, output_plots, output_fp_fn]
)
individual_process_btn.click(
process_files,
[ai_files, real_files],
[output_acc, output_roc, output_report, output_plots, output_fp_fn]
)
return app
if __name__ == "__main__":
app = create_gradio_interface()
app.launch(show_api=False, max_threads=24, show_error=True)
|