File size: 11,567 Bytes
6364b8e
 
050a6c5
e88ec7e
 
 
 
 
 
06b2f35
 
e88ec7e
 
 
 
 
 
06b2f35
e88ec7e
a870a21
d19e84e
75a5505
a870a21
d19e84e
050a6c5
 
 
 
 
a870a21
e88ec7e
a870a21
e88ec7e
a870a21
 
 
 
1a642a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e88ec7e
 
 
 
 
 
 
 
10b7edc
 
e88ec7e
 
 
 
 
 
 
 
 
 
 
10b7edc
 
e88ec7e
 
10b7edc
e88ec7e
 
 
 
10b7edc
e88ec7e
 
10b7edc
af90ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e88ec7e
1a642a1
e88ec7e
 
10b7edc
af90ec3
e6b4ee6
 
cf9edec
 
af90ec3
10b7edc
af90ec3
 
 
cf9edec
10b7edc
cf9edec
 
 
 
 
 
 
e88ec7e
cf9edec
 
 
 
 
 
 
 
e88ec7e
e6b4ee6
10b7edc
af90ec3
1a642a1
06b2f35
 
a870a21
06b2f35
 
 
a870a21
 
 
050a6c5
 
 
a870a21
 
 
e88ec7e
 
050a6c5
 
 
a870a21
050a6c5
a870a21
050a6c5
 
 
5ca31bc
e88ec7e
5ca31bc
e88ec7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a642a1
 
 
e88ec7e
 
 
 
 
 
 
1a642a1
 
 
 
 
 
 
 
 
e88ec7e
cf9edec
1a642a1
 
 
e88ec7e
cf9edec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
import os
import zipfile
import shutil
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc
from tqdm import tqdm
from PIL import Image
import uuid
import tempfile
import pandas as pd
from numpy import exp
import numpy as np
from sklearn.metrics import ConfusionMatrixDisplay
import urllib.request

# Define models
models = [
    "umm-maybe/AI-image-detector",
    "Organika/sdxl-detector",
    "cmckinle/sdxl-flux-detector",
]

pipe0 = pipeline("image-classification", f"{models[0]}")
pipe1 = pipeline("image-classification", f"{models[1]}")
pipe2 = pipeline("image-classification", f"{models[2]}")

fin_sum = []
uid = uuid.uuid4()

# Softmax function
def softmax(vector):
    e = exp(vector - vector.max())  # for numerical stability
    return e / e.sum()

# Single image classification functions
def image_classifier0(image):
    labels = ["AI", "Real"]
    outputs = pipe0(image)
    results = {}
    for idx, result in enumerate(outputs):
        results[labels[idx]] = float(outputs[idx]['score'])  # Convert to float
    fin_sum.append(results)
    return results

def image_classifier1(image):
    labels = ["AI", "Real"]
    outputs = pipe1(image)
    results = {}
    for idx, result in enumerate(outputs):
        results[labels[idx]] = float(outputs[idx]['score'])  # Convert to float
    fin_sum.append(results)
    return results

def image_classifier2(image):
    labels = ["AI", "Real"]
    outputs = pipe2(image)
    results = {}
    for idx, result in enumerate(outputs):
        results[labels[idx]] = float(outputs[idx]['score'])  # Convert to float
    fin_sum.append(results)
    return results

def aiornot0(image):
    labels = ["AI", "Real"]
    mod = models[0]
    feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
    model0 = AutoModelForImageClassification.from_pretrained(mod)
    input = feature_extractor0(image, return_tensors="pt")
    with torch.no_grad():
        outputs = model0(**input)
        logits = outputs.logits
        probability = softmax(logits)  # Apply softmax on logits
        px = pd.DataFrame(probability.numpy())
    prediction = logits.argmax(-1).item()
    label = labels[prediction]

    html_out = f"""
    <h1>This image is likely: {label}</h1><br><h3>
    Probabilities:<br>
    Real: {float(px[1][0]):.4f}<br>
    AI: {float(px[0][0]):.4f}"""
    
    results = {
        "Real": float(px[1][0]),
        "AI": float(px[0][0])
    }
    fin_sum.append(results)
    return gr.HTML.update(html_out), results

def aiornot1(image):
    labels = ["AI", "Real"]
    mod = models[1]
    feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
    model1 = AutoModelForImageClassification.from_pretrained(mod)
    input = feature_extractor1(image, return_tensors="pt")
    with torch.no_grad():
        outputs = model1(**input)
        logits = outputs.logits
        probability = softmax(logits)  # Apply softmax on logits
        px = pd.DataFrame(probability.numpy())
    prediction = logits.argmax(-1).item()
    label = labels[prediction]

    html_out = f"""
    <h1>This image is likely: {label}</h1><br><h3>
    Probabilities:<br>
    Real: {float(px[1][0]):.4f}<br>
    AI: {float(px[0][0]):.4f}"""
    
    results = {
        "Real": float(px[1][0]),
        "AI": float(px[0][0])
    }
    fin_sum.append(results)
    return gr.HTML.update(html_out), results

def aiornot2(image):
    labels = ["AI", "Real"]
    mod = models[2]
    feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
    model2 = AutoModelForImageClassification.from_pretrained(mod)
    input = feature_extractor2(image, return_tensors="pt")
    with torch.no_grad():
        outputs = model2(**input)
        logits = outputs.logits
        probability = softmax(logits)  # Apply softmax on logits
        px = pd.DataFrame(probability.numpy())
    prediction = logits.argmax(-1).item()
    label = labels[prediction]

    html_out = f"""
    <h1>This image is likely: {label}</h1><br><h3>
    Probabilities:<br>
    Real: {float(px[1][0]):.4f}<br>
    AI: {float(px[0][0]):.4f}"""
    
    results = {
        "Real": float(px[1][0]),
        "AI": float(px[0][0])
    }
    fin_sum.append(results)
    return gr.HTML.update(html_out), results

# Function to extract images from zip
def extract_zip(zip_file):
    temp_dir = tempfile.mkdtemp()  # Temporary directory
    with zipfile.ZipFile(zip_file, 'r') as z:
        z.extractall(temp_dir)
    return temp_dir

# Function to classify images in a folder
# Function to classify images in a folder
def classify_images(image_dir, model_pipeline, model_idx):
    images = []
    labels = []
    preds = []
    for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]:
        folder_path = os.path.join(image_dir, folder_name)
        if not os.path.exists(folder_path):
            continue
        for img_name in os.listdir(folder_path):
            img_path = os.path.join(folder_path, img_name)
            try:
                img = Image.open(img_path).convert("RGB")

                # Now use the specific model pipeline passed in
                pred = model_pipeline(img)
                pred_label = np.argmax([x['score'] for x in pred])

                preds.append(pred_label)
                labels.append(ground_truth_label)
                images.append(img_name)
            except Exception as e:
                print(f"Error processing image {img_name} in model {model_idx}: {e}")
    return labels, preds, images


# Function to classify images in a folder
def classify_images(image_dir, model_pipeline, model_idx):
    images = []
    labels = []
    preds = []
    for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]:
        folder_path = os.path.join(image_dir, folder_name)
        if not os.path.exists(folder_path):
            continue
        for img_name in os.listdir(folder_path):
            img_path = os.path.join(folder_path, img_name)
            try:
                img = Image.open(img_path).convert("RGB")
                
                # Ensure that each image is being processed by the correct model pipeline
                pred = model_pipeline(img)
                pred_label = np.argmax([x['score'] for x in pred])

                preds.append(pred_label)
                labels.append(ground_truth_label)
                images.append(img_name)
            except Exception as e:
                print(f"Error processing image {img_name} in model {model_idx}: {e}")
    return labels, preds, images

# Batch processing for all models
def process_zip(zip_file):
    extracted_dir = extract_zip(zip_file.name)

    # Initialize model pipelines separately to avoid reuse issues
    model_pipelines = [pipe0, pipe1, pipe2]

    # Run classification for each model
    results = {}
    for idx, pipe in enumerate(model_pipelines):
        print(f"Processing with model {idx}")
        
        # Classify images with the correct pipeline per model
        labels, preds, images = classify_images(extracted_dir, pipe, idx)
        accuracy, roc_score, report, cm_fig, roc_fig = evaluate_model(labels, preds)

        # Store results for each model
        results[f'Model_{idx}_accuracy'] = accuracy
        results[f'Model_{idx}_roc_score'] = roc_score
        results[f'Model_{idx}_report'] = report
        results[f'Model_{idx}_cm_fig'] = cm_fig
        results[f'Model_{idx}_roc_fig'] = roc_fig

    shutil.rmtree(extracted_dir)  # Clean up extracted files

    # Return results for all three models
    return (results['Model_0_accuracy'], results['Model_0_roc_score'], results['Model_0_report'], 
            results['Model_0_cm_fig'], results['Model_0_roc_fig'],
            results['Model_1_accuracy'], results['Model_1_roc_score'], results['Model_1_report'], 
            results['Model_1_cm_fig'], results['Model_1_roc_fig'],
            results['Model_2_accuracy'], results['Model_2_roc_score'], results['Model_2_report'], 
            results['Model_2_cm_fig'], results['Model_2_roc_fig'])




# Single image section
def load_url(url):
    try:
        urllib.request.urlretrieve(f'{url}', f"{uid}tmp_im.png")
        image = Image.open(f"{uid}tmp_im.png")
        mes = "Image Loaded"
    except Exception as e:
        image = None
        mes = f"Image not Found<br>Error: {e}"
    return image, mes

def tot_prob():
    try:
        fin_out = sum([result["Real"] for result in fin_sum]) / len(fin_sum)
        fin_sub = 1 - fin_out
        out = {
            "Real": f"{fin_out:.4f}",
            "AI": f"{fin_sub:.4f}"
        }
        return out
    except Exception as e:
        print(e)
        return None

def fin_clear():
    fin_sum.clear()
    return None

# Set up Gradio app
with gr.Blocks() as app:
    gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)</h4></h1></center>""")

    with gr.Tabs():
        # Tab for single image detection
        with gr.Tab("Single Image Detection"):
            with gr.Column():
                inp = gr.Image(type='pil')
                in_url = gr.Textbox(label="Image URL")
                with gr.Row():
                    load_btn = gr.Button("Load URL")
                    btn = gr.Button("Detect AI")
                mes = gr.HTML("""""")

            with gr.Group():
                with gr.Row():
                    fin = gr.Label(label="Final Probability")
                with gr.Row():
                    for i, model in enumerate(models):
                        with gr.Box():
                            gr.HTML(f"""<b>Testing on Model {i}: <a href='https://huggingface.co/{model}'>{model}</a></b>""")
                            globals()[f'outp{i}'] = gr.HTML("""""")
                            globals()[f'n_out{i}'] = gr.Label(label="Output")

            btn.click(fin_clear, None, fin, show_progress=False)
            load_btn.click(load_url, in_url, [inp, mes])

            btn.click(aiornot0, [inp], [outp0, n_out0]).then(
                aiornot1, [inp], [outp1, n_out1]).then(
                aiornot2, [inp], [outp2, n_out2]).then(
                tot_prob, None, fin, show_progress=False)

        # Tab for batch processing
        with gr.Tab("Batch Image Processing"):
            zip_file = gr.File(label="Upload Zip (two folders: real, ai)")
            batch_btn = gr.Button("Process Batch")

            for i, model in enumerate(models):
                with gr.Group():
                    gr.Markdown(f"### Results for {model}")
                    globals()[f'output_acc{i}'] = gr.Label(label=f"Model {i} Accuracy")
                    globals()[f'output_roc{i}'] = gr.Label(label=f"Model {i} ROC Score")
                    globals()[f'output_report{i}'] = gr.Textbox(label=f"Model {i} Classification Report", lines=10)
                    globals()[f'output_cm{i}'] = gr.Plot(label=f"Model {i} Confusion Matrix")
                    globals()[f'output_roc_plot{i}'] = gr.Plot(label=f"Model {i} ROC Curve")

    # Connect batch processing
    batch_btn.click(process_zip, zip_file, 
                    [output_acc0, output_roc0, output_report0, output_cm0, output_roc_plot0,
                     output_acc1, output_roc1, output_report1, output_cm1, output_roc_plot1,
                     output_acc2, output_roc2, output_report2, output_cm2, output_roc_plot2])

app.launch(show_api=False, max_threads=24)