Spaces:
Sleeping
Sleeping
File size: 11,567 Bytes
6364b8e 050a6c5 e88ec7e 06b2f35 e88ec7e 06b2f35 e88ec7e a870a21 d19e84e 75a5505 a870a21 d19e84e 050a6c5 a870a21 e88ec7e a870a21 e88ec7e a870a21 1a642a1 e88ec7e 10b7edc e88ec7e 10b7edc e88ec7e 10b7edc e88ec7e 10b7edc e88ec7e 10b7edc af90ec3 e88ec7e 1a642a1 e88ec7e 10b7edc af90ec3 e6b4ee6 cf9edec af90ec3 10b7edc af90ec3 cf9edec 10b7edc cf9edec e88ec7e cf9edec e88ec7e e6b4ee6 10b7edc af90ec3 1a642a1 06b2f35 a870a21 06b2f35 a870a21 050a6c5 a870a21 e88ec7e 050a6c5 a870a21 050a6c5 a870a21 050a6c5 5ca31bc e88ec7e 5ca31bc e88ec7e 1a642a1 e88ec7e 1a642a1 e88ec7e cf9edec 1a642a1 e88ec7e cf9edec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
import os
import zipfile
import shutil
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc
from tqdm import tqdm
from PIL import Image
import uuid
import tempfile
import pandas as pd
from numpy import exp
import numpy as np
from sklearn.metrics import ConfusionMatrixDisplay
import urllib.request
# Define models
models = [
"umm-maybe/AI-image-detector",
"Organika/sdxl-detector",
"cmckinle/sdxl-flux-detector",
]
pipe0 = pipeline("image-classification", f"{models[0]}")
pipe1 = pipeline("image-classification", f"{models[1]}")
pipe2 = pipeline("image-classification", f"{models[2]}")
fin_sum = []
uid = uuid.uuid4()
# Softmax function
def softmax(vector):
e = exp(vector - vector.max()) # for numerical stability
return e / e.sum()
# Single image classification functions
def image_classifier0(image):
labels = ["AI", "Real"]
outputs = pipe0(image)
results = {}
for idx, result in enumerate(outputs):
results[labels[idx]] = float(outputs[idx]['score']) # Convert to float
fin_sum.append(results)
return results
def image_classifier1(image):
labels = ["AI", "Real"]
outputs = pipe1(image)
results = {}
for idx, result in enumerate(outputs):
results[labels[idx]] = float(outputs[idx]['score']) # Convert to float
fin_sum.append(results)
return results
def image_classifier2(image):
labels = ["AI", "Real"]
outputs = pipe2(image)
results = {}
for idx, result in enumerate(outputs):
results[labels[idx]] = float(outputs[idx]['score']) # Convert to float
fin_sum.append(results)
return results
def aiornot0(image):
labels = ["AI", "Real"]
mod = models[0]
feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
model0 = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor0(image, return_tensors="pt")
with torch.no_grad():
outputs = model0(**input)
logits = outputs.logits
probability = softmax(logits) # Apply softmax on logits
px = pd.DataFrame(probability.numpy())
prediction = logits.argmax(-1).item()
label = labels[prediction]
html_out = f"""
<h1>This image is likely: {label}</h1><br><h3>
Probabilities:<br>
Real: {float(px[1][0]):.4f}<br>
AI: {float(px[0][0]):.4f}"""
results = {
"Real": float(px[1][0]),
"AI": float(px[0][0])
}
fin_sum.append(results)
return gr.HTML.update(html_out), results
def aiornot1(image):
labels = ["AI", "Real"]
mod = models[1]
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
model1 = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor1(image, return_tensors="pt")
with torch.no_grad():
outputs = model1(**input)
logits = outputs.logits
probability = softmax(logits) # Apply softmax on logits
px = pd.DataFrame(probability.numpy())
prediction = logits.argmax(-1).item()
label = labels[prediction]
html_out = f"""
<h1>This image is likely: {label}</h1><br><h3>
Probabilities:<br>
Real: {float(px[1][0]):.4f}<br>
AI: {float(px[0][0]):.4f}"""
results = {
"Real": float(px[1][0]),
"AI": float(px[0][0])
}
fin_sum.append(results)
return gr.HTML.update(html_out), results
def aiornot2(image):
labels = ["AI", "Real"]
mod = models[2]
feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
model2 = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor2(image, return_tensors="pt")
with torch.no_grad():
outputs = model2(**input)
logits = outputs.logits
probability = softmax(logits) # Apply softmax on logits
px = pd.DataFrame(probability.numpy())
prediction = logits.argmax(-1).item()
label = labels[prediction]
html_out = f"""
<h1>This image is likely: {label}</h1><br><h3>
Probabilities:<br>
Real: {float(px[1][0]):.4f}<br>
AI: {float(px[0][0]):.4f}"""
results = {
"Real": float(px[1][0]),
"AI": float(px[0][0])
}
fin_sum.append(results)
return gr.HTML.update(html_out), results
# Function to extract images from zip
def extract_zip(zip_file):
temp_dir = tempfile.mkdtemp() # Temporary directory
with zipfile.ZipFile(zip_file, 'r') as z:
z.extractall(temp_dir)
return temp_dir
# Function to classify images in a folder
# Function to classify images in a folder
def classify_images(image_dir, model_pipeline, model_idx):
images = []
labels = []
preds = []
for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]:
folder_path = os.path.join(image_dir, folder_name)
if not os.path.exists(folder_path):
continue
for img_name in os.listdir(folder_path):
img_path = os.path.join(folder_path, img_name)
try:
img = Image.open(img_path).convert("RGB")
# Now use the specific model pipeline passed in
pred = model_pipeline(img)
pred_label = np.argmax([x['score'] for x in pred])
preds.append(pred_label)
labels.append(ground_truth_label)
images.append(img_name)
except Exception as e:
print(f"Error processing image {img_name} in model {model_idx}: {e}")
return labels, preds, images
# Function to classify images in a folder
def classify_images(image_dir, model_pipeline, model_idx):
images = []
labels = []
preds = []
for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]:
folder_path = os.path.join(image_dir, folder_name)
if not os.path.exists(folder_path):
continue
for img_name in os.listdir(folder_path):
img_path = os.path.join(folder_path, img_name)
try:
img = Image.open(img_path).convert("RGB")
# Ensure that each image is being processed by the correct model pipeline
pred = model_pipeline(img)
pred_label = np.argmax([x['score'] for x in pred])
preds.append(pred_label)
labels.append(ground_truth_label)
images.append(img_name)
except Exception as e:
print(f"Error processing image {img_name} in model {model_idx}: {e}")
return labels, preds, images
# Batch processing for all models
def process_zip(zip_file):
extracted_dir = extract_zip(zip_file.name)
# Initialize model pipelines separately to avoid reuse issues
model_pipelines = [pipe0, pipe1, pipe2]
# Run classification for each model
results = {}
for idx, pipe in enumerate(model_pipelines):
print(f"Processing with model {idx}")
# Classify images with the correct pipeline per model
labels, preds, images = classify_images(extracted_dir, pipe, idx)
accuracy, roc_score, report, cm_fig, roc_fig = evaluate_model(labels, preds)
# Store results for each model
results[f'Model_{idx}_accuracy'] = accuracy
results[f'Model_{idx}_roc_score'] = roc_score
results[f'Model_{idx}_report'] = report
results[f'Model_{idx}_cm_fig'] = cm_fig
results[f'Model_{idx}_roc_fig'] = roc_fig
shutil.rmtree(extracted_dir) # Clean up extracted files
# Return results for all three models
return (results['Model_0_accuracy'], results['Model_0_roc_score'], results['Model_0_report'],
results['Model_0_cm_fig'], results['Model_0_roc_fig'],
results['Model_1_accuracy'], results['Model_1_roc_score'], results['Model_1_report'],
results['Model_1_cm_fig'], results['Model_1_roc_fig'],
results['Model_2_accuracy'], results['Model_2_roc_score'], results['Model_2_report'],
results['Model_2_cm_fig'], results['Model_2_roc_fig'])
# Single image section
def load_url(url):
try:
urllib.request.urlretrieve(f'{url}', f"{uid}tmp_im.png")
image = Image.open(f"{uid}tmp_im.png")
mes = "Image Loaded"
except Exception as e:
image = None
mes = f"Image not Found<br>Error: {e}"
return image, mes
def tot_prob():
try:
fin_out = sum([result["Real"] for result in fin_sum]) / len(fin_sum)
fin_sub = 1 - fin_out
out = {
"Real": f"{fin_out:.4f}",
"AI": f"{fin_sub:.4f}"
}
return out
except Exception as e:
print(e)
return None
def fin_clear():
fin_sum.clear()
return None
# Set up Gradio app
with gr.Blocks() as app:
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)</h4></h1></center>""")
with gr.Tabs():
# Tab for single image detection
with gr.Tab("Single Image Detection"):
with gr.Column():
inp = gr.Image(type='pil')
in_url = gr.Textbox(label="Image URL")
with gr.Row():
load_btn = gr.Button("Load URL")
btn = gr.Button("Detect AI")
mes = gr.HTML("""""")
with gr.Group():
with gr.Row():
fin = gr.Label(label="Final Probability")
with gr.Row():
for i, model in enumerate(models):
with gr.Box():
gr.HTML(f"""<b>Testing on Model {i}: <a href='https://huggingface.co/{model}'>{model}</a></b>""")
globals()[f'outp{i}'] = gr.HTML("""""")
globals()[f'n_out{i}'] = gr.Label(label="Output")
btn.click(fin_clear, None, fin, show_progress=False)
load_btn.click(load_url, in_url, [inp, mes])
btn.click(aiornot0, [inp], [outp0, n_out0]).then(
aiornot1, [inp], [outp1, n_out1]).then(
aiornot2, [inp], [outp2, n_out2]).then(
tot_prob, None, fin, show_progress=False)
# Tab for batch processing
with gr.Tab("Batch Image Processing"):
zip_file = gr.File(label="Upload Zip (two folders: real, ai)")
batch_btn = gr.Button("Process Batch")
for i, model in enumerate(models):
with gr.Group():
gr.Markdown(f"### Results for {model}")
globals()[f'output_acc{i}'] = gr.Label(label=f"Model {i} Accuracy")
globals()[f'output_roc{i}'] = gr.Label(label=f"Model {i} ROC Score")
globals()[f'output_report{i}'] = gr.Textbox(label=f"Model {i} Classification Report", lines=10)
globals()[f'output_cm{i}'] = gr.Plot(label=f"Model {i} Confusion Matrix")
globals()[f'output_roc_plot{i}'] = gr.Plot(label=f"Model {i} ROC Curve")
# Connect batch processing
batch_btn.click(process_zip, zip_file,
[output_acc0, output_roc0, output_report0, output_cm0, output_roc_plot0,
output_acc1, output_roc1, output_report1, output_cm1, output_roc_plot1,
output_acc2, output_roc2, output_report2, output_cm2, output_roc_plot2])
app.launch(show_api=False, max_threads=24)
|