File size: 13,618 Bytes
23cf930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ad891b
 
5268921
faca81a
23cf930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9dda97
23cf930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15cffc9
 
 
 
23cf930
15cffc9
 
23cf930
 
 
 
b14f67e
23cf930
 
 
 
 
b14f67e
 
 
 
 
 
 
 
23cf930
 
 
 
 
b14f67e
23cf930
 
 
 
 
 
 
 
15cffc9
e1ddcb6
 
 
 
 
 
 
 
 
 
15cffc9
 
 
 
 
 
 
 
cbc1123
 
 
 
 
 
 
 
 
 
fc9c6c5
 
0d1ae69
 
faca81a
cbc1123
 
15cffc9
 
e1ddcb6
cbc1123
 
 
e1ddcb6
cbc1123
 
 
e1ddcb6
cbc1123
 
 
 
 
 
 
 
 
 
 
 
 
 
fc9c6c5
 
0d1ae69
fc9c6c5
cbc1123
 
 
 
 
 
 
 
15cffc9
 
 
 
cbc1123
 
 
 
 
15cffc9
cbc1123
 
15cffc9
cbc1123
 
 
 
 
 
 
15cffc9
 
 
 
 
 
 
 
 
 
 
 
 
cbc1123
 
 
 
 
 
 
 
 
 
 
 
 
e1ddcb6
 
 
 
cbc1123
 
 
 
 
 
 
 
 
 
 
 
15cffc9
 
 
 
cbc1123
 
 
 
fc9c6c5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
import os
import zipfile
import shutil
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc, ConfusionMatrixDisplay
from PIL import Image
import tempfile
import numpy as np
import urllib.request
import base64
from io import BytesIO
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from bs4 import BeautifulSoup

#Update
MODEL_NAME = "cmckinle/sdxl-flux-detector_v1.1"
LABELS = ["AI", "Real"]

class AIDetector:
    def __init__(self):
        self.pipe = pipeline("image-classification", MODEL_NAME)
        self.feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
        self.model = AutoModelForImageClassification.from_pretrained(MODEL_NAME)

    @staticmethod
    def softmax(vector):
        e = np.exp(vector - np.max(vector))
        return e / e.sum()

    def predict(self, image):
        inputs = self.feature_extractor(image, return_tensors="pt")
        with torch.no_grad():
            outputs = self.model(**inputs)
            logits = outputs.logits
            probabilities = self.softmax(logits.numpy())
        
        prediction = logits.argmax(-1).item()
        label = LABELS[prediction]
        
        results = {label: float(prob) for label, prob in zip(LABELS, probabilities[0])}
        
        return label, results

def process_zip(zip_file):
    temp_dir = tempfile.mkdtemp()
    
    try:
        with zipfile.ZipFile(zip_file.name, 'r') as z:
            file_list = z.namelist()
            if not ('real/' in file_list and 'ai/' in file_list):
                raise ValueError("Zip file must contain 'real' and 'ai' folders")
            
            z.extractall(temp_dir)
        
        return evaluate_model(temp_dir)
    
    except Exception as e:
        raise gr.Error(f"Error processing zip file: {str(e)}")
    
    finally:
        shutil.rmtree(temp_dir)

def process_files(ai_files, real_files):
    temp_dir = tempfile.mkdtemp()
    try:
        ai_folder = os.path.join(temp_dir, 'ai')
        os.makedirs(ai_folder)
        for file in ai_files:
            shutil.copy(file.name, os.path.join(ai_folder, os.path.basename(file.name)))

        real_folder = os.path.join(temp_dir, 'real')
        os.makedirs(real_folder)
        for file in real_files:
            shutil.copy(file.name, os.path.join(real_folder, os.path.basename(file.name)))

        return evaluate_model(temp_dir)
    except Exception as e:
        raise gr.Error(f"Error processing individual files: {str(e)}")
    finally:
        shutil.rmtree(temp_dir)

def evaluate_model(temp_dir):
    labels, preds, images = [], [], []
    false_positives, false_negatives = [], []
    detector = AIDetector()
    
    total_images = sum(len(files) for _, _, files in os.walk(temp_dir))
    processed_images = 0
    
    for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]:
        folder_path = os.path.join(temp_dir, folder_name)
        if not os.path.exists(folder_path):
            raise ValueError(f"Folder not found: {folder_path}")
        
        for img_name in os.listdir(folder_path):
            img_path = os.path.join(folder_path, img_name)
            try:
                with Image.open(img_path).convert("RGB") as img:
                    _, prediction = detector.predict(img)
                
                pred_label = 0 if prediction["AI"] > prediction["Real"] else 1
                
                preds.append(pred_label)
                labels.append(ground_truth_label)
                images.append(img_name)

                if pred_label != ground_truth_label:
                    with open(img_path, "rb") as img_file:
                        img_data = base64.b64encode(img_file.read()).decode()
                    if pred_label == 1 and ground_truth_label == 0:
                        false_positives.append((img_name, img_data))
                    elif pred_label == 0 and ground_truth_label == 1:
                        false_negatives.append((img_name, img_data))

            except Exception as e:
                print(f"Error processing image {img_name}: {e}")
            
            processed_images += 1
            gr.Progress(processed_images / total_images)
    
    return calculate_metrics(labels, preds, false_positives, false_negatives)

def calculate_metrics(labels, preds, false_positives, false_negatives):
    cm = confusion_matrix(labels, preds)
    accuracy = accuracy_score(labels, preds)
    roc_score = roc_auc_score(labels, preds)
    report_html = format_classification_report(labels, preds)
    fpr, tpr, _ = roc_curve(labels, preds)
    roc_auc = auc(fpr, tpr)

    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
    
    ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=LABELS).plot(cmap=plt.cm.Blues, ax=ax1)
    ax1.set_title("Confusion Matrix")
    
    ax2.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
    ax2.plot([0, 1], [0, 1], color='gray', linestyle='--')
    ax2.set_xlim([0.0, 1.0])
    ax2.set_ylim([0.0, 1.05])
    ax2.set_xlabel('False Positive Rate')
    ax2.set_ylabel('True Positive Rate')
    ax2.set_title('ROC Curve')
    ax2.legend(loc="lower right")
    
    plt.tight_layout()

    fp_fn_html = create_fp_fn_html(false_positives, false_negatives)

    return accuracy, roc_score, report_html, fig, fp_fn_html

def format_classification_report(labels, preds):
    report_dict = classification_report(labels, preds, output_dict=True)
    
    html = """
    <table class="report-table">
        <tr>
            <th>Class</th>
            <th>Precision</th>
            <th>Recall</th>
            <th>F1-Score</th>
            <th>Support</th>
        </tr>
    """
    
    for class_name in ['0', '1']:
        html += f"""
        <tr>
            <td>{class_name}</td>
            <td>{report_dict[class_name]['precision']:.2f}</td>
            <td>{report_dict[class_name]['recall']:.2f}</td>
            <td>{report_dict[class_name]['f1-score']:.2f}</td>
            <td>{report_dict[class_name]['support']}</td>
        </tr>
        """
    
    html += f"""
        <tr>
            <td>Accuracy</td>
            <td colspan="3">{report_dict['accuracy']:.2f}</td>
            <td>{report_dict['macro avg']['support']}</td>
        </tr>
    </table>
    """
    
    return html

def create_fp_fn_html(false_positives, false_negatives):
    html = "<div class='image-grid'>"
    for img_name, img_data in false_positives + false_negatives:
        html += f"""
        <div class="image-item">
            <img src="data:image/jpeg;base64,{img_data}" alt="{img_name}">
            <p>{img_name}</p>
        </div>
        """
    return html

def generate_pdf(accuracy, roc_score, report_html, confusion_matrix_plot):
    buffer = BytesIO()
    c = canvas.Canvas(buffer, pagesize=letter)
    
    # Add content to PDF
    c.drawString(100, 750, f"Model Results")
    c.drawString(100, 730, f"Accuracy: {accuracy:.2f}")
    c.drawString(100, 710, f"ROC Score: {roc_score:.2f}")
    
    y_position = 690
    # Convert report_html to plain text if it's HTML content
    from bs4 import BeautifulSoup
    soup = BeautifulSoup(report_html, "html.parser")
    report_text = soup.get_text()

    # Add each line of the report text
    for line in report_text.splitlines():
        if y_position < 50:  # Create a new page if space runs out
            c.showPage()
            y_position = 750
        c.drawString(100, y_position, line.strip())
        y_position -= 20

    # Save Confusion Matrix Plot as an Image and Add it to the PDF
    img_buffer = BytesIO()
    confusion_matrix_plot.savefig(img_buffer, format="png")
    img_buffer.seek(0)
    c.drawImage(img_buffer, 100, y_position - 250, width=400, height=300)
    
    c.save()
    buffer.seek(0)
    return buffer

def load_url(url):
    try:
        urllib.request.urlretrieve(url, "temp_image.png")
        image = Image.open("temp_image.png")
        message = "Image Loaded"
    except Exception as e:
        image = None
        message = f"Image not Found<br>Error: {e}"
    return image, message

detector = AIDetector()

def create_gradio_interface():
    with gr.Blocks() as app:
        gr.Markdown("""<center><h1>AI Image Detector</h1></center>""")

        with gr.Tabs():
            with gr.Tab("Single Image Detection"):
                with gr.Column():
                    inp = gr.Image(type='pil')
                    in_url = gr.Textbox(label="Image URL")
                    with gr.Row():
                        load_btn = gr.Button("Load URL")
                        btn = gr.Button("Detect AI")
                    message = gr.HTML()

                with gr.Group():
                    with gr.Box():
                        # Add your note here about training:
                        gr.HTML(
                            """<b>Model: Newhouse AI Image Detection Model v1.1</b><br>
                            <i>This model is a fine tune on Organika/sdxl-detector, adding flux dev, flux schnell, Stable Diffusion 1,2, SDXL, and 3.5. v1.1 is further tuned on solid backgrounds</i>"""
                        )
                        output_html = gr.HTML()
                        output_label = gr.Label(label="Output")

            with gr.Tab("Batch Image Processing"):
                with gr.Accordion("Upload Zip File", open=False):
                    zip_file = gr.File(
                        label="Upload Zip (must contain 'real' and 'ai' folders)",
                        file_types=[".zip"],
                        file_count="single"
                    )
                    zip_process_btn = gr.Button("Process Zip", interactive=False)

                with gr.Accordion("Upload Individual Files", open=False):
                    with gr.Row():
                        ai_files = gr.File(
                            label="Upload AI Images",
                            file_types=["image"],
                            file_count="multiple"
                        )
                        real_files = gr.File(
                            label="Upload Real Images",
                            file_types=["image"],
                            file_count="multiple"
                        )
                    individual_process_btn = gr.Button("Process Individual Files", interactive=False)

                with gr.Group():
                    # Add the same or similar note here if you want it repeated:
                    gr.Markdown(
                        """### Newhouse AI Image Detection Model v1.1"""
                    )
                    output_acc = gr.Label(label="Accuracy")
                    output_roc = gr.Label(label="ROC Score")
                    output_report = gr.HTML(label="Classification Report")
                    output_plots = gr.Plot(label="Confusion Matrix and ROC Curve")
                    output_fp_fn = gr.HTML(label="False Positives and Negatives")

                    download_pdf_btn = gr.Button("Download Results as PDF")
                    pdf_output = gr.File(label="Download PDF", visible=False)

                reset_btn = gr.Button("Reset")

        load_btn.click(load_url, in_url, [inp, message])
        btn.click(
            lambda img: detector.predict(img),
            inp,
            [output_html, output_label]
        )

        def enable_zip_btn(file):
            return gr.Button.update(interactive=file is not None)

        def enable_individual_btn(ai_files, real_files):
            return gr.Button.update(interactive=(ai_files is not None and real_files is not None))

        zip_file.upload(enable_zip_btn, zip_file, zip_process_btn)
        
        ai_files.upload(enable_individual_btn, [ai_files, real_files], individual_process_btn)
        real_files.upload(enable_individual_btn, [ai_files, real_files], individual_process_btn)

        zip_process_btn.click(
            process_zip,
            zip_file,
            [output_acc, output_roc, output_report, output_plots, output_fp_fn]
        )

        individual_process_btn.click(
            process_files,
            [ai_files, real_files],
            [output_acc, output_roc, output_report, output_plots, output_fp_fn]
        )

        def on_download_pdf(accuracy, roc_score, report_html, confusion_matrix_plot):
            pdf_buffer = generate_pdf(accuracy, roc_score, report_html, confusion_matrix_plot)
            pdf_buffer.seek(0)
            return pdf_buffer

        download_pdf_btn.click(
            on_download_pdf,
            inputs=[output_acc, output_roc, output_report, output_plots],
            outputs=pdf_output
        )

        def reset_interface():
            return [
                None, None, None, None, None,
                gr.Button.update(interactive=False),
                gr.Button.update(interactive=False),
                None, None, None, None, None
            ]

        reset_btn.click(
            reset_interface,
            inputs=None,
            outputs=[
                zip_file, ai_files, real_files,
                output_acc, output_roc, output_report, output_plots, output_fp_fn,
                zip_process_btn, individual_process_btn
            ]
        )

    return app

if __name__ == "__main__":
    app = create_gradio_interface()
    app.launch(
        show_api=False,
        max_threads=24,
        show_error=True
    )