cmckinle commited on
Commit
1e15008
·
verified ·
1 Parent(s): 12fbe49

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -35
app.py CHANGED
@@ -43,42 +43,62 @@ class AIDetector:
43
 
44
  def process_zip(zip_file):
45
  temp_dir = tempfile.mkdtemp()
46
- with zipfile.ZipFile(zip_file.name, 'r') as z:
47
- z.extractall(temp_dir)
48
 
49
- labels, preds, images = [], [], []
50
- false_positives, false_negatives = [], []
51
- detector = AIDetector()
52
-
53
- for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]:
54
- folder_path = os.path.join(temp_dir, folder_name)
55
- if not os.path.exists(folder_path):
56
- print(f"Folder not found: {folder_path}")
57
- continue
58
- for img_name in os.listdir(folder_path):
59
- img_path = os.path.join(folder_path, img_name)
60
- try:
61
- img = Image.open(img_path).convert("RGB")
62
- _, prediction = detector.predict(img)
63
- pred_label = 0 if prediction["AI"] > prediction["Real"] else 1
64
-
65
- preds.append(pred_label)
66
- labels.append(ground_truth_label)
67
- images.append(img_name)
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
- # Collect false positives and false negatives with image data
70
- if pred_label != ground_truth_label:
71
- img_data = base64.b64encode(open(img_path, "rb").read()).decode()
72
- if pred_label == 1 and ground_truth_label == 0:
73
- false_positives.append((img_name, img_data))
74
- elif pred_label == 0 and ground_truth_label == 1:
75
- false_negatives.append((img_name, img_data))
 
76
 
77
- except Exception as e:
78
- print(f"Error processing image {img_name}: {e}")
 
 
 
 
 
 
 
 
79
 
80
- shutil.rmtree(temp_dir)
81
- return evaluate_model(labels, preds, false_positives, false_negatives)
82
 
83
  def format_classification_report(labels, preds):
84
  # Convert the report string to a dictionary
@@ -260,7 +280,7 @@ detector = AIDetector()
260
 
261
  def create_gradio_interface():
262
  with gr.Blocks() as app:
263
- gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)</h4></h1></center>""")
264
 
265
  with gr.Tabs():
266
  with gr.Tab("Single Image Detection"):
@@ -279,7 +299,12 @@ def create_gradio_interface():
279
  output_label = gr.Label(label="Output")
280
 
281
  with gr.Tab("Batch Image Processing"):
282
- zip_file = gr.File(label="Upload Zip (two folders: real, ai)")
 
 
 
 
 
283
  batch_btn = gr.Button("Process Batch")
284
 
285
  with gr.Group():
@@ -300,7 +325,8 @@ def create_gradio_interface():
300
  batch_btn.click(
301
  process_zip,
302
  zip_file,
303
- [output_acc, output_roc, output_report, output_plots, output_fp_fn]
 
304
  )
305
 
306
  return app
 
43
 
44
  def process_zip(zip_file):
45
  temp_dir = tempfile.mkdtemp()
 
 
46
 
47
+ try:
48
+ # Validate zip structure
49
+ with zipfile.ZipFile(zip_file.name, 'r') as z:
50
+ file_list = z.namelist()
51
+ if not ('real/' in file_list and 'ai/' in file_list):
52
+ raise ValueError("Zip file must contain 'real' and 'ai' folders")
53
+
54
+ z.extractall(temp_dir)
55
+
56
+ labels, preds, images = [], [], []
57
+ false_positives, false_negatives = [], []
58
+ detector = AIDetector()
59
+
60
+ total_images = sum(len(files) for _, _, files in os.walk(temp_dir))
61
+ processed_images = 0
62
+
63
+ for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]:
64
+ folder_path = os.path.join(temp_dir, folder_name)
65
+ if not os.path.exists(folder_path):
66
+ raise ValueError(f"Folder not found: {folder_path}")
67
+
68
+ for img_name in os.listdir(folder_path):
69
+ img_path = os.path.join(folder_path, img_name)
70
+ try:
71
+ with Image.open(img_path).convert("RGB") as img:
72
+ _, prediction = detector.predict(img)
73
+
74
+ pred_label = 0 if prediction["AI"] > prediction["Real"] else 1
75
+
76
+ preds.append(pred_label)
77
+ labels.append(ground_truth_label)
78
+ images.append(img_name)
79
 
80
+ # Collect false positives and false negatives with image data
81
+ if pred_label != ground_truth_label:
82
+ with open(img_path, "rb") as img_file:
83
+ img_data = base64.b64encode(img_file.read()).decode()
84
+ if pred_label == 1 and ground_truth_label == 0:
85
+ false_positives.append((img_name, img_data))
86
+ elif pred_label == 0 and ground_truth_label == 1:
87
+ false_negatives.append((img_name, img_data))
88
 
89
+ except Exception as e:
90
+ print(f"Error processing image {img_name}: {e}")
91
+
92
+ processed_images += 1
93
+ gr.Progress(processed_images / total_images)
94
+
95
+ return evaluate_model(labels, preds, false_positives, false_negatives)
96
+
97
+ except Exception as e:
98
+ raise gr.Error(f"Error processing zip file: {str(e)}")
99
 
100
+ finally:
101
+ shutil.rmtree(temp_dir)
102
 
103
  def format_classification_report(labels, preds):
104
  # Convert the report string to a dictionary
 
280
 
281
  def create_gradio_interface():
282
  with gr.Blocks() as app:
283
+ gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Demo)</h4></h1></center>""")
284
 
285
  with gr.Tabs():
286
  with gr.Tab("Single Image Detection"):
 
299
  output_label = gr.Label(label="Output")
300
 
301
  with gr.Tab("Batch Image Processing"):
302
+ zip_file = gr.File(
303
+ label="Upload Zip (Zip file must contain 2 folders, one labeled 'real' and one labled 'ai' )",
304
+ file_types=[".zip"],
305
+ file_count="single",
306
+ max_file_size=1024 # Increased to 1024 MB (1 GB)
307
+ )
308
  batch_btn = gr.Button("Process Batch")
309
 
310
  with gr.Group():
 
325
  batch_btn.click(
326
  process_zip,
327
  zip_file,
328
+ [output_acc, output_roc, output_report, output_plots, output_fp_fn],
329
+ api_name="batch_process"
330
  )
331
 
332
  return app