cmckinle commited on
Commit
a38dfd7
·
verified ·
1 Parent(s): 773268b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -32
app.py CHANGED
@@ -7,9 +7,7 @@ import shutil
7
  import matplotlib.pyplot as plt
8
  from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc, ConfusionMatrixDisplay
9
  from PIL import Image
10
- import uuid
11
  import tempfile
12
- import pandas as pd
13
  import numpy as np
14
  import urllib.request
15
 
@@ -21,19 +19,12 @@ class AIDetector:
21
  self.pipe = pipeline("image-classification", MODEL_NAME)
22
  self.feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
23
  self.model = AutoModelForImageClassification.from_pretrained(MODEL_NAME)
24
- self.results = []
25
 
26
  @staticmethod
27
  def softmax(vector):
28
  e = np.exp(vector - np.max(vector))
29
  return e / e.sum()
30
 
31
- def classify_image(self, image):
32
- outputs = self.pipe(image)
33
- results = {label: float(output['score']) for label, output in zip(LABELS, outputs)}
34
- self.results.append(results)
35
- return results
36
-
37
  def predict(self, image):
38
  inputs = self.feature_extractor(image, return_tensors="pt")
39
  with torch.no_grad():
@@ -45,19 +36,9 @@ class AIDetector:
45
  label = LABELS[prediction]
46
 
47
  results = {label: float(prob) for label, prob in zip(LABELS, probabilities[0])}
48
- self.results.append(results)
49
 
50
  return label, results
51
 
52
- def get_total_probability(self):
53
- if not self.results:
54
- return None
55
- avg_real_prob = sum(result["Real"] for result in self.results) / len(self.results)
56
- return {"Real": f"{avg_real_prob:.4f}", "AI": f"{1 - avg_real_prob:.4f}"}
57
-
58
- def clear_results(self):
59
- self.results.clear()
60
-
61
  def process_zip(zip_file):
62
  temp_dir = tempfile.mkdtemp()
63
  with zipfile.ZipFile(zip_file.name, 'r') as z:
@@ -140,13 +121,10 @@ def create_gradio_interface():
140
  message = gr.HTML()
141
 
142
  with gr.Group():
143
- with gr.Row():
144
- final_prob = gr.Label(label="Final Probability")
145
- with gr.Row():
146
- with gr.Box():
147
- gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{MODEL_NAME}'>{MODEL_NAME}</a></b>""")
148
- output_html = gr.HTML()
149
- output_label = gr.Label(label="Output")
150
 
151
  with gr.Tab("Batch Image Processing"):
152
  zip_file = gr.File(label="Upload Zip (two folders: real, ai)")
@@ -160,16 +138,10 @@ def create_gradio_interface():
160
  output_plots = gr.Plot(label="Confusion Matrix and ROC Curve")
161
 
162
  load_btn.click(load_url, in_url, [inp, message])
163
- btn.click(detector.clear_results, None, final_prob, show_progress=False)
164
  btn.click(
165
  lambda img: detector.predict(img),
166
  inp,
167
  [output_html, output_label]
168
- ).then(
169
- lambda: detector.get_total_probability(),
170
- None,
171
- final_prob,
172
- show_progress=False
173
  )
174
 
175
  batch_btn.click(
 
7
  import matplotlib.pyplot as plt
8
  from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc, ConfusionMatrixDisplay
9
  from PIL import Image
 
10
  import tempfile
 
11
  import numpy as np
12
  import urllib.request
13
 
 
19
  self.pipe = pipeline("image-classification", MODEL_NAME)
20
  self.feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
21
  self.model = AutoModelForImageClassification.from_pretrained(MODEL_NAME)
 
22
 
23
  @staticmethod
24
  def softmax(vector):
25
  e = np.exp(vector - np.max(vector))
26
  return e / e.sum()
27
 
 
 
 
 
 
 
28
  def predict(self, image):
29
  inputs = self.feature_extractor(image, return_tensors="pt")
30
  with torch.no_grad():
 
36
  label = LABELS[prediction]
37
 
38
  results = {label: float(prob) for label, prob in zip(LABELS, probabilities[0])}
 
39
 
40
  return label, results
41
 
 
 
 
 
 
 
 
 
 
42
  def process_zip(zip_file):
43
  temp_dir = tempfile.mkdtemp()
44
  with zipfile.ZipFile(zip_file.name, 'r') as z:
 
121
  message = gr.HTML()
122
 
123
  with gr.Group():
124
+ with gr.Box():
125
+ gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{MODEL_NAME}'>{MODEL_NAME}</a></b>""")
126
+ output_html = gr.HTML()
127
+ output_label = gr.Label(label="Output")
 
 
 
128
 
129
  with gr.Tab("Batch Image Processing"):
130
  zip_file = gr.File(label="Upload Zip (two folders: real, ai)")
 
138
  output_plots = gr.Plot(label="Confusion Matrix and ROC Curve")
139
 
140
  load_btn.click(load_url, in_url, [inp, message])
 
141
  btn.click(
142
  lambda img: detector.predict(img),
143
  inp,
144
  [output_html, output_label]
 
 
 
 
 
145
  )
146
 
147
  batch_btn.click(