Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,9 +7,7 @@ import shutil
|
|
7 |
import matplotlib.pyplot as plt
|
8 |
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc, ConfusionMatrixDisplay
|
9 |
from PIL import Image
|
10 |
-
import uuid
|
11 |
import tempfile
|
12 |
-
import pandas as pd
|
13 |
import numpy as np
|
14 |
import urllib.request
|
15 |
|
@@ -21,19 +19,12 @@ class AIDetector:
|
|
21 |
self.pipe = pipeline("image-classification", MODEL_NAME)
|
22 |
self.feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
|
23 |
self.model = AutoModelForImageClassification.from_pretrained(MODEL_NAME)
|
24 |
-
self.results = []
|
25 |
|
26 |
@staticmethod
|
27 |
def softmax(vector):
|
28 |
e = np.exp(vector - np.max(vector))
|
29 |
return e / e.sum()
|
30 |
|
31 |
-
def classify_image(self, image):
|
32 |
-
outputs = self.pipe(image)
|
33 |
-
results = {label: float(output['score']) for label, output in zip(LABELS, outputs)}
|
34 |
-
self.results.append(results)
|
35 |
-
return results
|
36 |
-
|
37 |
def predict(self, image):
|
38 |
inputs = self.feature_extractor(image, return_tensors="pt")
|
39 |
with torch.no_grad():
|
@@ -45,19 +36,9 @@ class AIDetector:
|
|
45 |
label = LABELS[prediction]
|
46 |
|
47 |
results = {label: float(prob) for label, prob in zip(LABELS, probabilities[0])}
|
48 |
-
self.results.append(results)
|
49 |
|
50 |
return label, results
|
51 |
|
52 |
-
def get_total_probability(self):
|
53 |
-
if not self.results:
|
54 |
-
return None
|
55 |
-
avg_real_prob = sum(result["Real"] for result in self.results) / len(self.results)
|
56 |
-
return {"Real": f"{avg_real_prob:.4f}", "AI": f"{1 - avg_real_prob:.4f}"}
|
57 |
-
|
58 |
-
def clear_results(self):
|
59 |
-
self.results.clear()
|
60 |
-
|
61 |
def process_zip(zip_file):
|
62 |
temp_dir = tempfile.mkdtemp()
|
63 |
with zipfile.ZipFile(zip_file.name, 'r') as z:
|
@@ -140,13 +121,10 @@ def create_gradio_interface():
|
|
140 |
message = gr.HTML()
|
141 |
|
142 |
with gr.Group():
|
143 |
-
with gr.
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{MODEL_NAME}'>{MODEL_NAME}</a></b>""")
|
148 |
-
output_html = gr.HTML()
|
149 |
-
output_label = gr.Label(label="Output")
|
150 |
|
151 |
with gr.Tab("Batch Image Processing"):
|
152 |
zip_file = gr.File(label="Upload Zip (two folders: real, ai)")
|
@@ -160,16 +138,10 @@ def create_gradio_interface():
|
|
160 |
output_plots = gr.Plot(label="Confusion Matrix and ROC Curve")
|
161 |
|
162 |
load_btn.click(load_url, in_url, [inp, message])
|
163 |
-
btn.click(detector.clear_results, None, final_prob, show_progress=False)
|
164 |
btn.click(
|
165 |
lambda img: detector.predict(img),
|
166 |
inp,
|
167 |
[output_html, output_label]
|
168 |
-
).then(
|
169 |
-
lambda: detector.get_total_probability(),
|
170 |
-
None,
|
171 |
-
final_prob,
|
172 |
-
show_progress=False
|
173 |
)
|
174 |
|
175 |
batch_btn.click(
|
|
|
7 |
import matplotlib.pyplot as plt
|
8 |
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc, ConfusionMatrixDisplay
|
9 |
from PIL import Image
|
|
|
10 |
import tempfile
|
|
|
11 |
import numpy as np
|
12 |
import urllib.request
|
13 |
|
|
|
19 |
self.pipe = pipeline("image-classification", MODEL_NAME)
|
20 |
self.feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
|
21 |
self.model = AutoModelForImageClassification.from_pretrained(MODEL_NAME)
|
|
|
22 |
|
23 |
@staticmethod
|
24 |
def softmax(vector):
|
25 |
e = np.exp(vector - np.max(vector))
|
26 |
return e / e.sum()
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def predict(self, image):
|
29 |
inputs = self.feature_extractor(image, return_tensors="pt")
|
30 |
with torch.no_grad():
|
|
|
36 |
label = LABELS[prediction]
|
37 |
|
38 |
results = {label: float(prob) for label, prob in zip(LABELS, probabilities[0])}
|
|
|
39 |
|
40 |
return label, results
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def process_zip(zip_file):
|
43 |
temp_dir = tempfile.mkdtemp()
|
44 |
with zipfile.ZipFile(zip_file.name, 'r') as z:
|
|
|
121 |
message = gr.HTML()
|
122 |
|
123 |
with gr.Group():
|
124 |
+
with gr.Box():
|
125 |
+
gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{MODEL_NAME}'>{MODEL_NAME}</a></b>""")
|
126 |
+
output_html = gr.HTML()
|
127 |
+
output_label = gr.Label(label="Output")
|
|
|
|
|
|
|
128 |
|
129 |
with gr.Tab("Batch Image Processing"):
|
130 |
zip_file = gr.File(label="Upload Zip (two folders: real, ai)")
|
|
|
138 |
output_plots = gr.Plot(label="Confusion Matrix and ROC Curve")
|
139 |
|
140 |
load_btn.click(load_url, in_url, [inp, message])
|
|
|
141 |
btn.click(
|
142 |
lambda img: detector.predict(img),
|
143 |
inp,
|
144 |
[output_html, output_label]
|
|
|
|
|
|
|
|
|
|
|
145 |
)
|
146 |
|
147 |
batch_btn.click(
|