Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ import zipfile
|
|
6 |
import shutil
|
7 |
import matplotlib.pyplot as plt
|
8 |
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc
|
9 |
-
from tqdm import tqdm
|
10 |
from PIL import Image
|
11 |
import uuid
|
12 |
import tempfile
|
@@ -16,16 +15,9 @@ import numpy as np
|
|
16 |
from sklearn.metrics import ConfusionMatrixDisplay
|
17 |
import urllib.request
|
18 |
|
19 |
-
# Define
|
20 |
-
|
21 |
-
|
22 |
-
"Organika/sdxl-detector",
|
23 |
-
"cmckinle/sdxl-flux-detector",
|
24 |
-
]
|
25 |
-
|
26 |
-
pipe0 = pipeline("image-classification", f"{models[0]}")
|
27 |
-
pipe1 = pipeline("image-classification", f"{models[1]}")
|
28 |
-
pipe2 = pipeline("image-classification", f"{models[2]}")
|
29 |
|
30 |
fin_sum = []
|
31 |
uid = uuid.uuid4()
|
@@ -35,98 +27,25 @@ def softmax(vector):
|
|
35 |
e = exp(vector - vector.max()) # for numerical stability
|
36 |
return e / e.sum()
|
37 |
|
38 |
-
# Single image classification
|
39 |
-
def
|
40 |
labels = ["AI", "Real"]
|
41 |
-
outputs =
|
42 |
results = {}
|
43 |
for idx, result in enumerate(outputs):
|
44 |
-
results[labels[idx]] = float(outputs[idx]['score'])
|
45 |
fin_sum.append(results)
|
46 |
return results
|
47 |
|
48 |
-
def
|
49 |
-
labels = ["AI", "Real"]
|
50 |
-
outputs = pipe1(image)
|
51 |
-
results = {}
|
52 |
-
for idx, result in enumerate(outputs):
|
53 |
-
results[labels[idx]] = float(outputs[idx]['score']) # Convert to float
|
54 |
-
fin_sum.append(results)
|
55 |
-
return results
|
56 |
-
|
57 |
-
def image_classifier2(image):
|
58 |
-
labels = ["AI", "Real"]
|
59 |
-
outputs = pipe2(image)
|
60 |
-
results = {}
|
61 |
-
for idx, result in enumerate(outputs):
|
62 |
-
results[labels[idx]] = float(outputs[idx]['score']) # Convert to float
|
63 |
-
fin_sum.append(results)
|
64 |
-
return results
|
65 |
-
|
66 |
-
def aiornot0(image):
|
67 |
-
labels = ["AI", "Real"]
|
68 |
-
mod = models[0]
|
69 |
-
feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
|
70 |
-
model0 = AutoModelForImageClassification.from_pretrained(mod)
|
71 |
-
input = feature_extractor0(image, return_tensors="pt")
|
72 |
-
with torch.no_grad():
|
73 |
-
outputs = model0(**input)
|
74 |
-
logits = outputs.logits
|
75 |
-
probability = softmax(logits) # Apply softmax on logits
|
76 |
-
px = pd.DataFrame(probability.numpy())
|
77 |
-
prediction = logits.argmax(-1).item()
|
78 |
-
label = labels[prediction]
|
79 |
-
|
80 |
-
html_out = f"""
|
81 |
-
<h1>This image is likely: {label}</h1><br><h3>
|
82 |
-
Probabilities:<br>
|
83 |
-
Real: {float(px[1][0]):.4f}<br>
|
84 |
-
AI: {float(px[0][0]):.4f}"""
|
85 |
-
|
86 |
-
results = {
|
87 |
-
"Real": float(px[1][0]),
|
88 |
-
"AI": float(px[0][0])
|
89 |
-
}
|
90 |
-
fin_sum.append(results)
|
91 |
-
return gr.HTML.update(html_out), results
|
92 |
-
|
93 |
-
def aiornot1(image):
|
94 |
labels = ["AI", "Real"]
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
input = feature_extractor1(image, return_tensors="pt")
|
99 |
with torch.no_grad():
|
100 |
-
outputs =
|
101 |
logits = outputs.logits
|
102 |
-
probability = softmax(logits)
|
103 |
-
px = pd.DataFrame(probability.numpy())
|
104 |
-
prediction = logits.argmax(-1).item()
|
105 |
-
label = labels[prediction]
|
106 |
-
|
107 |
-
html_out = f"""
|
108 |
-
<h1>This image is likely: {label}</h1><br><h3>
|
109 |
-
Probabilities:<br>
|
110 |
-
Real: {float(px[1][0]):.4f}<br>
|
111 |
-
AI: {float(px[0][0]):.4f}"""
|
112 |
-
|
113 |
-
results = {
|
114 |
-
"Real": float(px[1][0]),
|
115 |
-
"AI": float(px[0][0])
|
116 |
-
}
|
117 |
-
fin_sum.append(results)
|
118 |
-
return gr.HTML.update(html_out), results
|
119 |
-
|
120 |
-
def aiornot2(image):
|
121 |
-
labels = ["AI", "Real"]
|
122 |
-
mod = models[2]
|
123 |
-
feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
|
124 |
-
model2 = AutoModelForImageClassification.from_pretrained(mod)
|
125 |
-
input = feature_extractor2(image, return_tensors="pt")
|
126 |
-
with torch.no_grad():
|
127 |
-
outputs = model2(**input)
|
128 |
-
logits = outputs.logits
|
129 |
-
probability = softmax(logits) # Apply softmax on logits
|
130 |
px = pd.DataFrame(probability.numpy())
|
131 |
prediction = logits.argmax(-1).item()
|
132 |
label = labels[prediction]
|
@@ -146,13 +65,13 @@ def aiornot2(image):
|
|
146 |
|
147 |
# Function to extract images from zip
|
148 |
def extract_zip(zip_file):
|
149 |
-
temp_dir = tempfile.mkdtemp()
|
150 |
with zipfile.ZipFile(zip_file, 'r') as z:
|
151 |
z.extractall(temp_dir)
|
152 |
return temp_dir
|
153 |
|
154 |
# Function to classify images in a folder
|
155 |
-
def classify_images(image_dir
|
156 |
images = []
|
157 |
labels = []
|
158 |
preds = []
|
@@ -165,18 +84,16 @@ def classify_images(image_dir, model_pipeline, model_idx):
|
|
165 |
img_path = os.path.join(folder_path, img_name)
|
166 |
try:
|
167 |
img = Image.open(img_path).convert("RGB")
|
168 |
-
|
169 |
-
|
170 |
-
pred = model_pipeline(img)
|
171 |
-
pred_label = 0 if pred[0]['label'] == 'AI' else 1 # Assuming 'AI' is label 0 and 'Real' is label 1
|
172 |
|
173 |
preds.append(pred_label)
|
174 |
labels.append(ground_truth_label)
|
175 |
images.append(img_name)
|
176 |
except Exception as e:
|
177 |
-
print(f"Error processing image {img_name}
|
178 |
|
179 |
-
print(f"
|
180 |
return labels, preds, images
|
181 |
|
182 |
# Function to generate evaluation metrics
|
@@ -206,46 +123,13 @@ def evaluate_model(labels, preds):
|
|
206 |
|
207 |
return accuracy, roc_score, report, fig, fig_roc
|
208 |
|
209 |
-
# Batch processing
|
210 |
def process_zip(zip_file):
|
211 |
extracted_dir = extract_zip(zip_file.name)
|
212 |
-
|
213 |
-
|
214 |
-
results = {}
|
215 |
-
for idx in range(len(models)):
|
216 |
-
print(f"Processing with model {models[idx]}") # Debugging to show which model is being used
|
217 |
-
|
218 |
-
# Create a new pipeline for each model within the loop
|
219 |
-
pipe = pipeline("image-classification", f"{models[idx]}")
|
220 |
-
print(f"Initialized pipeline for {models[idx]}") # Confirm pipeline is initialized correctly
|
221 |
-
|
222 |
-
# Classify images with the correct pipeline per model
|
223 |
-
labels, preds, images = classify_images(extracted_dir, pipe, idx)
|
224 |
-
|
225 |
-
# Debugging: Print the predictions to ensure they're different
|
226 |
-
print(f"Predictions for model {models[idx]}: {preds}")
|
227 |
-
|
228 |
-
accuracy, roc_score, report, cm_fig, roc_fig = evaluate_model(labels, preds)
|
229 |
-
|
230 |
-
# Store results for each model
|
231 |
-
results[f'Model_{idx}_accuracy'] = accuracy
|
232 |
-
results[f'Model_{idx}_roc_score'] = roc_score
|
233 |
-
results[f'Model_{idx}_report'] = report
|
234 |
-
results[f'Model_{idx}_cm_fig'] = cm_fig
|
235 |
-
results[f'Model_{idx}_roc_fig'] = roc_fig
|
236 |
-
|
237 |
shutil.rmtree(extracted_dir) # Clean up extracted files
|
238 |
-
|
239 |
-
# Return results for all models
|
240 |
-
return (results['Model_0_accuracy'], results['Model_0_roc_score'], results['Model_0_report'],
|
241 |
-
results['Model_0_cm_fig'], results['Model_0_roc_fig'],
|
242 |
-
results['Model_1_accuracy'], results['Model_1_roc_score'], results['Model_1_report'],
|
243 |
-
results['Model_1_cm_fig'], results['Model_1_roc_fig'],
|
244 |
-
results['Model_2_accuracy'], results['Model_2_roc_score'], results['Model_2_report'],
|
245 |
-
results['Model_2_cm_fig'], results['Model_2_roc_fig'])
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
|
250 |
# Single image section
|
251 |
def load_url(url):
|
@@ -294,18 +178,15 @@ with gr.Blocks() as app:
|
|
294 |
with gr.Row():
|
295 |
fin = gr.Label(label="Final Probability")
|
296 |
with gr.Row():
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
globals()[f'n_out{i}'] = gr.Label(label="Output")
|
302 |
|
303 |
btn.click(fin_clear, None, fin, show_progress=False)
|
304 |
load_btn.click(load_url, in_url, [inp, mes])
|
305 |
|
306 |
-
btn.click(
|
307 |
-
aiornot1, [inp], [outp1, n_out1]).then(
|
308 |
-
aiornot2, [inp], [outp2, n_out2]).then(
|
309 |
tot_prob, None, fin, show_progress=False)
|
310 |
|
311 |
# Tab for batch processing
|
@@ -313,19 +194,16 @@ with gr.Blocks() as app:
|
|
313 |
zip_file = gr.File(label="Upload Zip (two folders: real, ai)")
|
314 |
batch_btn = gr.Button("Process Batch")
|
315 |
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
globals()[f'output_roc_plot{i}'] = gr.Plot(label=f"Model {i} ROC Curve")
|
324 |
|
325 |
# Connect batch processing
|
326 |
batch_btn.click(process_zip, zip_file,
|
327 |
-
[
|
328 |
-
output_acc1, output_roc1, output_report1, output_cm1, output_roc_plot1,
|
329 |
-
output_acc2, output_roc2, output_report2, output_cm2, output_roc_plot2])
|
330 |
|
331 |
-
app.launch(show_api=False, max_threads=24)
|
|
|
6 |
import shutil
|
7 |
import matplotlib.pyplot as plt
|
8 |
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc
|
|
|
9 |
from PIL import Image
|
10 |
import uuid
|
11 |
import tempfile
|
|
|
15 |
from sklearn.metrics import ConfusionMatrixDisplay
|
16 |
import urllib.request
|
17 |
|
18 |
+
# Define model
|
19 |
+
model = "cmckinle/sdxl-flux-detector"
|
20 |
+
pipe = pipeline("image-classification", model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
fin_sum = []
|
23 |
uid = uuid.uuid4()
|
|
|
27 |
e = exp(vector - vector.max()) # for numerical stability
|
28 |
return e / e.sum()
|
29 |
|
30 |
+
# Single image classification function
|
31 |
+
def image_classifier(image):
|
32 |
labels = ["AI", "Real"]
|
33 |
+
outputs = pipe(image)
|
34 |
results = {}
|
35 |
for idx, result in enumerate(outputs):
|
36 |
+
results[labels[idx]] = float(outputs[idx]['score'])
|
37 |
fin_sum.append(results)
|
38 |
return results
|
39 |
|
40 |
+
def aiornot(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
labels = ["AI", "Real"]
|
42 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model)
|
43 |
+
model_cls = AutoModelForImageClassification.from_pretrained(model)
|
44 |
+
input = feature_extractor(image, return_tensors="pt")
|
|
|
45 |
with torch.no_grad():
|
46 |
+
outputs = model_cls(**input)
|
47 |
logits = outputs.logits
|
48 |
+
probability = softmax(logits)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
px = pd.DataFrame(probability.numpy())
|
50 |
prediction = logits.argmax(-1).item()
|
51 |
label = labels[prediction]
|
|
|
65 |
|
66 |
# Function to extract images from zip
|
67 |
def extract_zip(zip_file):
|
68 |
+
temp_dir = tempfile.mkdtemp()
|
69 |
with zipfile.ZipFile(zip_file, 'r') as z:
|
70 |
z.extractall(temp_dir)
|
71 |
return temp_dir
|
72 |
|
73 |
# Function to classify images in a folder
|
74 |
+
def classify_images(image_dir):
|
75 |
images = []
|
76 |
labels = []
|
77 |
preds = []
|
|
|
84 |
img_path = os.path.join(folder_path, img_name)
|
85 |
try:
|
86 |
img = Image.open(img_path).convert("RGB")
|
87 |
+
pred = pipe(img)
|
88 |
+
pred_label = 0 if pred[0]['label'] == 'AI' else 1
|
|
|
|
|
89 |
|
90 |
preds.append(pred_label)
|
91 |
labels.append(ground_truth_label)
|
92 |
images.append(img_name)
|
93 |
except Exception as e:
|
94 |
+
print(f"Error processing image {img_name}: {e}")
|
95 |
|
96 |
+
print(f"Processed {len(images)} images")
|
97 |
return labels, preds, images
|
98 |
|
99 |
# Function to generate evaluation metrics
|
|
|
123 |
|
124 |
return accuracy, roc_score, report, fig, fig_roc
|
125 |
|
126 |
+
# Batch processing
|
127 |
def process_zip(zip_file):
|
128 |
extracted_dir = extract_zip(zip_file.name)
|
129 |
+
labels, preds, images = classify_images(extracted_dir)
|
130 |
+
accuracy, roc_score, report, cm_fig, roc_fig = evaluate_model(labels, preds)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
shutil.rmtree(extracted_dir) # Clean up extracted files
|
132 |
+
return accuracy, roc_score, report, cm_fig, roc_fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
# Single image section
|
135 |
def load_url(url):
|
|
|
178 |
with gr.Row():
|
179 |
fin = gr.Label(label="Final Probability")
|
180 |
with gr.Row():
|
181 |
+
with gr.Box():
|
182 |
+
gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{model}'>{model}</a></b>""")
|
183 |
+
outp = gr.HTML("""""")
|
184 |
+
n_out = gr.Label(label="Output")
|
|
|
185 |
|
186 |
btn.click(fin_clear, None, fin, show_progress=False)
|
187 |
load_btn.click(load_url, in_url, [inp, mes])
|
188 |
|
189 |
+
btn.click(aiornot, [inp], [outp, n_out]).then(
|
|
|
|
|
190 |
tot_prob, None, fin, show_progress=False)
|
191 |
|
192 |
# Tab for batch processing
|
|
|
194 |
zip_file = gr.File(label="Upload Zip (two folders: real, ai)")
|
195 |
batch_btn = gr.Button("Process Batch")
|
196 |
|
197 |
+
with gr.Group():
|
198 |
+
gr.Markdown(f"### Results for {model}")
|
199 |
+
output_acc = gr.Label(label="Accuracy")
|
200 |
+
output_roc = gr.Label(label="ROC Score")
|
201 |
+
output_report = gr.Textbox(label="Classification Report", lines=10)
|
202 |
+
output_cm = gr.Plot(label="Confusion Matrix")
|
203 |
+
output_roc_plot = gr.Plot(label="ROC Curve")
|
|
|
204 |
|
205 |
# Connect batch processing
|
206 |
batch_btn.click(process_zip, zip_file,
|
207 |
+
[output_acc, output_roc, output_report, output_cm, output_roc_plot])
|
|
|
|
|
208 |
|
209 |
+
app.launch(show_api=False, max_threads=24)
|