import gradio as gr import torch from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline import os import zipfile import shutil import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc, ConfusionMatrixDisplay from PIL import Image import tempfile import numpy as np import urllib.request import base64 from io import BytesIO import logging from tqdm import tqdm # Set up logging logging.basicConfig(filename='app.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') MODEL_NAME = "cmckinle/sdxl-flux-detector" LABELS = ["AI", "Real"] class AIDetector: def __init__(self): self.pipe = pipeline("image-classification", MODEL_NAME) self.feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME) self.model = AutoModelForImageClassification.from_pretrained(MODEL_NAME) @staticmethod def softmax(vector): e = np.exp(vector - np.max(vector)) return e / e.sum() def predict(self, image): inputs = self.feature_extractor(image, return_tensors="pt") with torch.no_grad(): outputs = self.model(**inputs) logits = outputs.logits probabilities = self.softmax(logits.numpy()) prediction = logits.argmax(-1).item() label = LABELS[prediction] results = {label: float(prob) for label, prob in zip(LABELS, probabilities[0])} return label, results def custom_upload_handler(file): try: logging.info(f"Starting upload of file: {file.name}") file_size = os.path.getsize(file.name) logging.info(f"File size: {file_size} bytes") # Read and process the file in chunks chunk_size = 1024 * 1024 # 1MB chunks total_chunks = file_size // chunk_size + (1 if file_size % chunk_size > 0 else 0) with open(file.name, 'rb') as f: for chunk in tqdm(range(total_chunks), desc="Uploading"): data = f.read(chunk_size) if not data: break logging.debug(f"Processed chunk {chunk+1} of {total_chunks}") logging.info("File upload completed successfully") return file except Exception as e: logging.error(f"Error during file upload: {str(e)}") raise gr.Error(f"Upload failed: {str(e)}") def process_zip(zip_file): temp_dir = tempfile.mkdtemp() try: logging.info(f"Starting to process zip file: {zip_file.name}") # Validate zip structure with zipfile.ZipFile(zip_file.name, 'r') as z: file_list = z.namelist() if not ('real/' in file_list and 'ai/' in file_list): raise ValueError("Zip file must contain 'real' and 'ai' folders") z.extractall(temp_dir) labels, preds, images = [], [], [] false_positives, false_negatives = [], [] detector = AIDetector() total_images = sum(len(files) for _, _, files in os.walk(temp_dir)) processed_images = 0 for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]: folder_path = os.path.join(temp_dir, folder_name) if not os.path.exists(folder_path): raise ValueError(f"Folder not found: {folder_path}") for img_name in os.listdir(folder_path): img_path = os.path.join(folder_path, img_name) try: with Image.open(img_path).convert("RGB") as img: _, prediction = detector.predict(img) pred_label = 0 if prediction["AI"] > prediction["Real"] else 1 preds.append(pred_label) labels.append(ground_truth_label) images.append(img_name) # Collect false positives and false negatives with image data if pred_label != ground_truth_label: with open(img_path, "rb") as img_file: img_data = base64.b64encode(img_file.read()).decode() if pred_label == 1 and ground_truth_label == 0: false_positives.append((img_name, img_data)) elif pred_label == 0 and ground_truth_label == 1: false_negatives.append((img_name, img_data)) except Exception as e: logging.error(f"Error processing image {img_name}: {e}") processed_images += 1 gr.Progress(processed_images / total_images) logging.info("Zip file processing completed successfully") return evaluate_model(labels, preds, false_positives, false_negatives) except Exception as e: logging.error(f"Error processing zip file: {str(e)}") raise gr.Error(f"Error processing zip file: {str(e)}") finally: shutil.rmtree(temp_dir) def format_classification_report(labels, preds): # Convert the report string to a dictionary report_dict = classification_report(labels, preds, output_dict=True) # Create an HTML table with updated CSS html = """ """ # Add rows for each class for class_name in ['0', '1']: html += f""" """ # Add summary rows html += f"""
Class Precision Recall F1-Score Support
{class_name} {report_dict[class_name]['precision']:.2f} {report_dict[class_name]['recall']:.2f} {report_dict[class_name]['f1-score']:.2f} {report_dict[class_name]['support']}
Accuracy {report_dict['accuracy']:.2f} {report_dict['macro avg']['support']}
Macro Avg {report_dict['macro avg']['precision']:.2f} {report_dict['macro avg']['recall']:.2f} {report_dict['macro avg']['f1-score']:.2f} {report_dict['macro avg']['support']}
Weighted Avg {report_dict['weighted avg']['precision']:.2f} {report_dict['weighted avg']['recall']:.2f} {report_dict['weighted avg']['f1-score']:.2f} {report_dict['weighted avg']['support']}
""" return html def evaluate_model(labels, preds, false_positives, false_negatives): cm = confusion_matrix(labels, preds) accuracy = accuracy_score(labels, preds) roc_score = roc_auc_score(labels, preds) report_html = format_classification_report(labels, preds) fpr, tpr, _ = roc_curve(labels, preds) roc_auc = auc(fpr, tpr) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6)) ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=LABELS).plot(cmap=plt.cm.Blues, ax=ax1) ax1.set_title("Confusion Matrix") ax2.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})') ax2.plot([0, 1], [0, 1], color='gray', linestyle='--') ax2.set_xlim([0.0, 1.0]) ax2.set_ylim([0.0, 1.05]) ax2.set_xlabel('False Positive Rate') ax2.set_ylabel('True Positive Rate') ax2.set_title('ROC Curve') ax2.legend(loc="lower right") plt.tight_layout() # Create HTML for false positives and negatives with images fp_fn_html = """ """ fp_fn_html += "

False Positives (AI images classified as Real):

" fp_fn_html += '
' for img_name, img_data in false_positives: fp_fn_html += f'''
{img_name}

{img_name}

''' fp_fn_html += '
' fp_fn_html += "

False Negatives (Real images classified as AI):

" fp_fn_html += '
' for img_name, img_data in false_negatives: fp_fn_html += f'''
{img_name}

{img_name}

''' fp_fn_html += '
' return accuracy, roc_score, report_html, fig, fp_fn_html def load_url(url): try: urllib.request.urlretrieve(url, "temp_image.png") image = Image.open("temp_image.png") message = "Image Loaded" except Exception as e: image = None message = f"Image not Found
Error: {e}" return image, message detector = AIDetector() def create_gradio_interface(): with gr.Blocks() as app: gr.Markdown("""

AI Image Detector

(Test Demo - accuracy varies by model)

""") with gr.Tabs(): with gr.Tab("Single Image Detection"): with gr.Column(): inp = gr.Image(type='pil') in_url = gr.Textbox(label="Image URL") with gr.Row(): load_btn = gr.Button("Load URL") btn = gr.Button("Detect AI") message = gr.HTML() with gr.Group(): with gr.Box(): gr.HTML(f"""Testing on Model: {MODEL_NAME}""") output_html = gr.HTML() output_label = gr.Label(label="Output") with gr.Tab("Batch Image Processing"): zip_file = gr.File( label="Upload Zip (must contain 'real' and 'ai' folders)", file_types=[".zip"], file_count="single", max_file_size=1024 * 10, # 10240 MB (10 GB) preprocess=custom_upload_handler ) batch_btn = gr.Button("Process Batch", interactive=False) with gr.Group(): gr.Markdown(f"### Results for {MODEL_NAME}") output_acc = gr.Label(label="Accuracy") output_roc = gr.Label(label="ROC Score") output_report = gr.HTML(label="Classification Report") output_plots = gr.Plot(label="Confusion Matrix and ROC Curve") output_fp_fn = gr.HTML(label="False Positives and Negatives") load_btn.click(load_url, in_url, [inp, message]) btn.click( lambda img: detector.predict(img), inp, [output_html, output_label] ) def enable_batch_btn(file): return gr.Button.update(interactive=file is not None)