import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
import os
import zipfile
import shutil
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc, ConfusionMatrixDisplay
from PIL import Image
import tempfile
import numpy as np
import urllib.request
MODEL_NAME = "cmckinle/sdxl-flux-detector"
LABELS = ["AI", "Real"]
class AIDetector:
def __init__(self):
self.pipe = pipeline("image-classification", MODEL_NAME)
self.feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
self.model = AutoModelForImageClassification.from_pretrained(MODEL_NAME)
@staticmethod
def softmax(vector):
e = np.exp(vector - np.max(vector))
return e / e.sum()
def predict(self, image):
inputs = self.feature_extractor(image, return_tensors="pt")
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probabilities = self.softmax(logits.numpy())
prediction = logits.argmax(-1).item()
label = LABELS[prediction]
results = {label: float(prob) for label, prob in zip(LABELS, probabilities[0])}
return label, results
def process_zip(zip_file):
temp_dir = tempfile.mkdtemp()
with zipfile.ZipFile(zip_file.name, 'r') as z:
z.extractall(temp_dir)
labels, preds, images = [], [], []
detector = AIDetector()
for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]:
folder_path = os.path.join(temp_dir, folder_name)
if not os.path.exists(folder_path):
print(f"Folder not found: {folder_path}")
continue
for img_name in os.listdir(folder_path):
img_path = os.path.join(folder_path, img_name)
try:
img = Image.open(img_path).convert("RGB")
_, prediction = detector.predict(img)
pred_label = 0 if prediction["AI"] > prediction["Real"] else 1
preds.append(pred_label)
labels.append(ground_truth_label)
images.append(img_name)
except Exception as e:
print(f"Error processing image {img_name}: {e}")
shutil.rmtree(temp_dir)
return evaluate_model(labels, preds)
def evaluate_model(labels, preds):
cm = confusion_matrix(labels, preds)
accuracy = accuracy_score(labels, preds)
roc_score = roc_auc_score(labels, preds)
report = classification_report(labels, preds)
fpr, tpr, _ = roc_curve(labels, preds)
roc_auc = auc(fpr, tpr)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=LABELS).plot(cmap=plt.cm.Blues, ax=ax1)
ax1.set_title("Confusion Matrix")
ax2.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
ax2.plot([0, 1], [0, 1], color='gray', linestyle='--')
ax2.set_xlim([0.0, 1.0])
ax2.set_ylim([0.0, 1.05])
ax2.set_xlabel('False Positive Rate')
ax2.set_ylabel('True Positive Rate')
ax2.set_title('ROC Curve')
ax2.legend(loc="lower right")
plt.tight_layout()
return accuracy, roc_score, report, fig
def load_url(url):
try:
urllib.request.urlretrieve(url, "temp_image.png")
image = Image.open("temp_image.png")
message = "Image Loaded"
except Exception as e:
image = None
message = f"Image not Found
Error: {e}"
return image, message
detector = AIDetector()
def create_gradio_interface():
with gr.Blocks() as app:
gr.Markdown("""