import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
import os
import zipfile
import shutil
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc
from PIL import Image
import uuid
import tempfile
import pandas as pd
from numpy import exp
import numpy as np
from sklearn.metrics import ConfusionMatrixDisplay
import urllib.request
# Define model
model = "cmckinle/sdxl-flux-detector"
pipe = pipeline("image-classification", model)
fin_sum = []
uid = uuid.uuid4()
# Softmax function
def softmax(vector):
e = exp(vector - vector.max()) # for numerical stability
return e / e.sum()
# Single image classification function
def image_classifier(image):
labels = ["AI", "Real"]
outputs = pipe(image)
results = {}
for idx, result in enumerate(outputs):
results[labels[idx]] = float(outputs[idx]['score'])
fin_sum.append(results)
return results
def aiornot(image):
labels = ["AI", "Real"]
feature_extractor = AutoFeatureExtractor.from_pretrained(model)
model_cls = AutoModelForImageClassification.from_pretrained(model)
input = feature_extractor(image, return_tensors="pt")
with torch.no_grad():
outputs = model_cls(**input)
logits = outputs.logits
probability = softmax(logits)
px = pd.DataFrame(probability.numpy())
prediction = logits.argmax(-1).item()
label = labels[prediction]
html_out = f"""
This image is likely: {label}
Probabilities:
Real: {float(px[1][0]):.4f}
AI: {float(px[0][0]):.4f}"""
results = {
"Real": float(px[1][0]),
"AI": float(px[0][0])
}
fin_sum.append(results)
return gr.HTML.update(html_out), results
# Function to extract images from zip
def extract_zip(zip_file):
temp_dir = tempfile.mkdtemp()
with zipfile.ZipFile(zip_file, 'r') as z:
z.extractall(temp_dir)
return temp_dir
# Function to classify images in a folder
def classify_images(image_dir):
images = []
labels = []
preds = []
for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]:
folder_path = os.path.join(image_dir, folder_name)
if not os.path.exists(folder_path):
print(f"Folder not found: {folder_path}")
continue
for img_name in os.listdir(folder_path):
img_path = os.path.join(folder_path, img_name)
try:
img = Image.open(img_path).convert("RGB")
pred = pipe(img)
pred_label = 0 if pred[0]['label'] == 'AI' else 1
preds.append(pred_label)
labels.append(ground_truth_label)
images.append(img_name)
except Exception as e:
print(f"Error processing image {img_name}: {e}")
print(f"Processed {len(images)} images")
return labels, preds, images
# Function to generate evaluation metrics
def evaluate_model(labels, preds):
cm = confusion_matrix(labels, preds)
accuracy = accuracy_score(labels, preds)
roc_score = roc_auc_score(labels, preds)
report = classification_report(labels, preds)
fpr, tpr, _ = roc_curve(labels, preds)
roc_auc = auc(fpr, tpr)
fig, ax = plt.subplots()
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=["AI", "Real"])
disp.plot(cmap=plt.cm.Blues, ax=ax)
plt.close(fig)
fig_roc, ax_roc = plt.subplots()
ax_roc.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
ax_roc.plot([0, 1], [0, 1], color='gray', linestyle='--')
ax_roc.set_xlim([0.0, 1.0])
ax_roc.set_ylim([0.0, 1.05])
ax_roc.set_xlabel('False Positive Rate')
ax_roc.set_ylabel('True Positive Rate')
ax_roc.set_title('Receiver Operating Characteristic (ROC) Curve')
ax_roc.legend(loc="lower right")
plt.close(fig_roc)
return accuracy, roc_score, report, fig, fig_roc
# Batch processing
def process_zip(zip_file):
extracted_dir = extract_zip(zip_file.name)
labels, preds, images = classify_images(extracted_dir)
accuracy, roc_score, report, cm_fig, roc_fig = evaluate_model(labels, preds)
shutil.rmtree(extracted_dir) # Clean up extracted files
return accuracy, roc_score, report, cm_fig, roc_fig
# Single image section
def load_url(url):
try:
urllib.request.urlretrieve(f'{url}', f"{uid}tmp_im.png")
image = Image.open(f"{uid}tmp_im.png")
mes = "Image Loaded"
except Exception as e:
image = None
mes = f"Image not Found
Error: {e}"
return image, mes
def tot_prob():
try:
fin_out = sum([result["Real"] for result in fin_sum]) / len(fin_sum)
fin_sub = 1 - fin_out
out = {
"Real": f"{fin_out:.4f}",
"AI": f"{fin_sub:.4f}"
}
return out
except Exception as e:
print(e)
return None
def fin_clear():
fin_sum.clear()
return None
# Set up Gradio app
with gr.Blocks() as app:
gr.Markdown("""AI Image Detector
(Test Demo - accuracy varies by model)
""")
with gr.Tabs():
# Tab for single image detection
with gr.Tab("Single Image Detection"):
with gr.Column():
inp = gr.Image(type='pil')
in_url = gr.Textbox(label="Image URL")
with gr.Row():
load_btn = gr.Button("Load URL")
btn = gr.Button("Detect AI")
mes = gr.HTML("""""")
with gr.Group():
with gr.Row():
fin = gr.Label(label="Final Probability")
with gr.Row():
with gr.Box():
gr.HTML(f"""Testing on Model: {model}""")
outp = gr.HTML("""""")
n_out = gr.Label(label="Output")
btn.click(fin_clear, None, fin, show_progress=False)
load_btn.click(load_url, in_url, [inp, mes])
btn.click(aiornot, [inp], [outp, n_out]).then(
tot_prob, None, fin, show_progress=False)
# Tab for batch processing
with gr.Tab("Batch Image Processing"):
zip_file = gr.File(label="Upload Zip (two folders: real, ai)")
batch_btn = gr.Button("Process Batch")
with gr.Group():
gr.Markdown(f"### Results for {model}")
output_acc = gr.Label(label="Accuracy")
output_roc = gr.Label(label="ROC Score")
output_report = gr.Textbox(label="Classification Report", lines=10)
output_cm = gr.Plot(label="Confusion Matrix")
output_roc_plot = gr.Plot(label="ROC Curve")
# Connect batch processing
batch_btn.click(process_zip, zip_file,
[output_acc, output_roc, output_report, output_cm, output_roc_plot])
app.launch(show_api=False, max_threads=24)