import gradio as gr import torch from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline import os import zipfile import shutil import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc, ConfusionMatrixDisplay from PIL import Image import tempfile import numpy as np import urllib.request import base64 from io import BytesIO from reportlab.lib.pagesizes import letter from reportlab.pdfgen import canvas from bs4 import BeautifulSoup #Update MODEL_NAME = "cmckinle/sdxl-flux-detector_v1.1" LABELS = ["AI", "Real"] class AIDetector: def __init__(self): self.pipe = pipeline("image-classification", MODEL_NAME) self.feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME) self.model = AutoModelForImageClassification.from_pretrained(MODEL_NAME) @staticmethod def softmax(vector): e = np.exp(vector - np.max(vector)) return e / e.sum() def predict(self, image): inputs = self.feature_extractor(image, return_tensors="pt") with torch.no_grad(): outputs = self.model(**inputs) logits = outputs.logits probabilities = self.softmax(logits.numpy()) prediction = logits.argmax(-1).item() label = LABELS[prediction] results = {label: float(prob) for label, prob in zip(LABELS, probabilities[0])} return label, results def process_zip(zip_file): temp_dir = tempfile.mkdtemp() try: with zipfile.ZipFile(zip_file.name, 'r') as z: file_list = z.namelist() if not ('real/' in file_list and 'ai/' in file_list): raise ValueError("Zip file must contain 'real' and 'ai' folders") z.extractall(temp_dir) return evaluate_model(temp_dir) except Exception as e: raise gr.Error(f"Error processing zip file: {str(e)}") finally: shutil.rmtree(temp_dir) def process_files(ai_files, real_files): temp_dir = tempfile.mkdtemp() try: ai_folder = os.path.join(temp_dir, 'ai') os.makedirs(ai_folder) for file in ai_files: shutil.copy(file.name, os.path.join(ai_folder, os.path.basename(file.name))) real_folder = os.path.join(temp_dir, 'real') os.makedirs(real_folder) for file in real_files: shutil.copy(file.name, os.path.join(real_folder, os.path.basename(file.name))) return evaluate_model(temp_dir) except Exception as e: raise gr.Error(f"Error processing individual files: {str(e)}") finally: shutil.rmtree(temp_dir) def evaluate_model(temp_dir): labels, preds, images = [], [], [] false_positives, false_negatives = [], [] detector = AIDetector() total_images = sum(len(files) for _, _, files in os.walk(temp_dir)) processed_images = 0 for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]: folder_path = os.path.join(temp_dir, folder_name) if not os.path.exists(folder_path): raise ValueError(f"Folder not found: {folder_path}") for img_name in os.listdir(folder_path): img_path = os.path.join(folder_path, img_name) try: with Image.open(img_path).convert("RGB") as img: _, prediction = detector.predict(img) pred_label = 0 if prediction["AI"] > prediction["Real"] else 1 preds.append(pred_label) labels.append(ground_truth_label) images.append(img_name) if pred_label != ground_truth_label: with open(img_path, "rb") as img_file: img_data = base64.b64encode(img_file.read()).decode() if pred_label == 1 and ground_truth_label == 0: false_positives.append((img_name, img_data)) elif pred_label == 0 and ground_truth_label == 1: false_negatives.append((img_name, img_data)) except Exception as e: print(f"Error processing image {img_name}: {e}") processed_images += 1 gr.Progress(processed_images / total_images) return calculate_metrics(labels, preds, false_positives, false_negatives) def calculate_metrics(labels, preds, false_positives, false_negatives): cm = confusion_matrix(labels, preds) accuracy = accuracy_score(labels, preds) roc_score = roc_auc_score(labels, preds) report_html = format_classification_report(labels, preds) fpr, tpr, _ = roc_curve(labels, preds) roc_auc = auc(fpr, tpr) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6)) ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=LABELS).plot(cmap=plt.cm.Blues, ax=ax1) ax1.set_title("Confusion Matrix") ax2.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})') ax2.plot([0, 1], [0, 1], color='gray', linestyle='--') ax2.set_xlim([0.0, 1.0]) ax2.set_ylim([0.0, 1.05]) ax2.set_xlabel('False Positive Rate') ax2.set_ylabel('True Positive Rate') ax2.set_title('ROC Curve') ax2.legend(loc="lower right") plt.tight_layout() fp_fn_html = create_fp_fn_html(false_positives, false_negatives) return accuracy, roc_score, report_html, fig, fp_fn_html def format_classification_report(labels, preds): report_dict = classification_report(labels, preds, output_dict=True) html = """ """ for class_name in ['0', '1']: html += f""" """ html += f"""
Class Precision Recall F1-Score Support
{class_name} {report_dict[class_name]['precision']:.2f} {report_dict[class_name]['recall']:.2f} {report_dict[class_name]['f1-score']:.2f} {report_dict[class_name]['support']}
Accuracy {report_dict['accuracy']:.2f} {report_dict['macro avg']['support']}
""" return html def create_fp_fn_html(false_positives, false_negatives): html = "
" for img_name, img_data in false_positives + false_negatives: html += f"""
{img_name}

{img_name}

""" return html def generate_pdf(accuracy, roc_score, report_html, confusion_matrix_plot): buffer = BytesIO() c = canvas.Canvas(buffer, pagesize=letter) # Add content to PDF c.drawString(100, 750, f"Model Results") c.drawString(100, 730, f"Accuracy: {accuracy:.2f}") c.drawString(100, 710, f"ROC Score: {roc_score:.2f}") y_position = 690 # Convert report_html to plain text if it's HTML content from bs4 import BeautifulSoup soup = BeautifulSoup(report_html, "html.parser") report_text = soup.get_text() # Add each line of the report text for line in report_text.splitlines(): if y_position < 50: # Create a new page if space runs out c.showPage() y_position = 750 c.drawString(100, y_position, line.strip()) y_position -= 20 # Save Confusion Matrix Plot as an Image and Add it to the PDF img_buffer = BytesIO() confusion_matrix_plot.savefig(img_buffer, format="png") img_buffer.seek(0) c.drawImage(img_buffer, 100, y_position - 250, width=400, height=300) c.save() buffer.seek(0) return buffer def load_url(url): try: urllib.request.urlretrieve(url, "temp_image.png") image = Image.open("temp_image.png") message = "Image Loaded" except Exception as e: image = None message = f"Image not Found
Error: {e}" return image, message detector = AIDetector() def create_gradio_interface(): with gr.Blocks() as app: gr.Markdown("""

AI Image Detector

""") with gr.Tabs(): with gr.Tab("Single Image Detection"): with gr.Column(): inp = gr.Image(type='pil') in_url = gr.Textbox(label="Image URL") with gr.Row(): load_btn = gr.Button("Load URL") btn = gr.Button("Detect AI") message = gr.HTML() with gr.Group(): with gr.Box(): # Add your note here about training: gr.HTML( """Model: Newhouse AI Image Detection Model v1.1
This model is a fine tune on Organika/sdxl-detector, adding flux dev, flux schnell, Stable Diffusion 1,2, SDXL, and 3.5. v1.1 is further tuned on solid backgrounds""" ) output_html = gr.HTML() output_label = gr.Label(label="Output") with gr.Tab("Batch Image Processing"): with gr.Accordion("Upload Zip File", open=False): zip_file = gr.File( label="Upload Zip (must contain 'real' and 'ai' folders)", file_types=[".zip"], file_count="single" ) zip_process_btn = gr.Button("Process Zip", interactive=False) with gr.Accordion("Upload Individual Files", open=False): with gr.Row(): ai_files = gr.File( label="Upload AI Images", file_types=["image"], file_count="multiple" ) real_files = gr.File( label="Upload Real Images", file_types=["image"], file_count="multiple" ) individual_process_btn = gr.Button("Process Individual Files", interactive=False) with gr.Group(): # Add the same or similar note here if you want it repeated: gr.Markdown( """### Newhouse AI Image Detection Model v1.1""" ) output_acc = gr.Label(label="Accuracy") output_roc = gr.Label(label="ROC Score") output_report = gr.HTML(label="Classification Report") output_plots = gr.Plot(label="Confusion Matrix and ROC Curve") output_fp_fn = gr.HTML(label="False Positives and Negatives") download_pdf_btn = gr.Button("Download Results as PDF") pdf_output = gr.File(label="Download PDF", visible=False) reset_btn = gr.Button("Reset") load_btn.click(load_url, in_url, [inp, message]) btn.click( lambda img: detector.predict(img), inp, [output_html, output_label] ) def enable_zip_btn(file): return gr.Button.update(interactive=file is not None) def enable_individual_btn(ai_files, real_files): return gr.Button.update(interactive=(ai_files is not None and real_files is not None)) zip_file.upload(enable_zip_btn, zip_file, zip_process_btn) ai_files.upload(enable_individual_btn, [ai_files, real_files], individual_process_btn) real_files.upload(enable_individual_btn, [ai_files, real_files], individual_process_btn) zip_process_btn.click( process_zip, zip_file, [output_acc, output_roc, output_report, output_plots, output_fp_fn] ) individual_process_btn.click( process_files, [ai_files, real_files], [output_acc, output_roc, output_report, output_plots, output_fp_fn] ) def on_download_pdf(accuracy, roc_score, report_html, confusion_matrix_plot): pdf_buffer = generate_pdf(accuracy, roc_score, report_html, confusion_matrix_plot) pdf_buffer.seek(0) return pdf_buffer download_pdf_btn.click( on_download_pdf, inputs=[output_acc, output_roc, output_report, output_plots], outputs=pdf_output ) def reset_interface(): return [ None, None, None, None, None, gr.Button.update(interactive=False), gr.Button.update(interactive=False), None, None, None, None, None ] reset_btn.click( reset_interface, inputs=None, outputs=[ zip_file, ai_files, real_files, output_acc, output_roc, output_report, output_plots, output_fp_fn, zip_process_btn, individual_process_btn ] ) return app if __name__ == "__main__": app = create_gradio_interface() app.launch( show_api=False, max_threads=24, show_error=True )