File size: 13,731 Bytes
76d3fa1
0c22348
1880ac6
 
0c22348
1880ac6
 
76d3fa1
3ce130a
4f8bd37
1880ac6
 
 
 
 
76d3fa1
0c22348
4f8bd37
76d3fa1
1880ac6
237ffdd
0c22348
 
 
76d3fa1
0c22348
 
 
33a0edf
 
0c22348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76d3fa1
4f8bd37
0c22348
33a0edf
f325d08
4f8bd37
 
 
 
 
 
 
 
 
 
 
 
f325d08
7438440
237ffdd
 
 
 
 
 
 
f325d08
4f8bd37
33a0edf
 
76d3fa1
 
 
1880ac6
 
 
76d3fa1
 
2600030
76d3fa1
1880ac6
76d3fa1
1880ac6
76d3fa1
1880ac6
76d3fa1
 
 
 
0c22348
 
 
 
 
 
 
 
 
 
 
 
6774d89
0c22348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33a0edf
0c22348
 
 
 
 
33a0edf
0c22348
 
4128c07
0c22348
 
 
 
4128c07
0c22348
4128c07
0c22348
 
 
 
 
 
4128c07
 
0c22348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33a0edf
 
 
 
 
 
 
 
 
 
 
 
 
76d3fa1
 
6774d89
33a0edf
 
0c22348
33a0edf
0c22348
 
 
f325d08
33a0edf
0c22348
 
33a0edf
1880ac6
33a0edf
1880ac6
 
 
33a0edf
 
 
0c22348
 
 
33a0edf
1880ac6
33a0edf
 
1880ac6
 
 
237ffdd
 
 
 
 
 
 
 
 
0c22348
 
76d3fa1
 
0c22348
 
 
76d3fa1
 
 
 
 
 
 
 
 
3ce130a
1880ac6
 
3ce130a
76d3fa1
 
 
 
 
 
 
 
0c22348
 
 
 
76d3fa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c22348
 
4f8bd37
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import os
from collections import defaultdict
from dataclasses import dataclass
from uuid import uuid4
import json

import gradio as gr
import torch
import transformers
from peft import PeftConfig, PeftModel, get_peft_model
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
)

from utils import Environment, Agent, format_sotopia_prompt, get_starter_prompt, format_bot_message
from functools import cache

DEPLOYED = os.getenv("DEPLOYED", "true").lower() == "true"
DEFAULT_MODEL_SELECTION = "cmu-lti/sotopia-pi-mistral-7b-BC_SR" # "mistralai/Mistral-7B-Instruct-v0.1"
TEMPERATURE = 0.0
TOP_P = 1
MAX_TOKENS = 1024

ENVIRONMENT_PROFILES = "profiles/environment_profiles.jsonl"
AGENT_PROFILES = "profiles/agent_profiles.jsonl"
RELATIONSHIP_PROFILES = "profiles/relationship_profiles.jsonl"


@cache
def get_sotopia_profiles(env_file=ENVIRONMENT_PROFILES, agent_file=AGENT_PROFILES, relationship_file=RELATIONSHIP_PROFILES):
    with open(env_file, 'r') as f:
        data = [json.loads(line) for line in f.readlines()]
    
    code_names_count = defaultdict(int)
    environments = []
    environment_dict = {}
    for profile in sorted(data, key=lambda x: x['codename']):
        env_obj = Environment(profile)
        if profile['codename'] in code_names_count:
            environments.append((
                "{}_{:05d}".format(profile['codename'], 
                                   code_names_count[profile['codename']]
                                   ), 
                env_obj._id
                ))
        else:
            environments.append((profile['codename'], env_obj._id))
        environment_dict[env_obj._id] = env_obj
        code_names_count[profile['codename']] += 1
    
    with open(agent_file, 'r') as f:
        data = [json.loads(line) for line in f.readlines()]
    
    agent_dict = {}
    for profile in data:
        agent_obj = Agent(profile)
        agent_dict[agent_obj._id] = agent_obj
        
    with open(relationship_file, 'r') as f:
        data = [json.loads(line) for line in f.readlines()]
    
    relationship_dict = defaultdict(lambda : defaultdict(list))
    for profile in data:
        relationship_dict[profile['relationship']][profile['agent1_id']].append(profile['agent2_id'])
        relationship_dict[profile['relationship']][profile['agent2_id']].append(profile['agent1_id'])
    
    return environments, environment_dict, agent_dict, relationship_dict

@cache
def prepare_model(model_name):
    compute_type = torch.float16
    
    if 'cmu-lti/sotopia-pi-mistral-7b-BC_SR'in model_name:
        model = AutoModelForCausalLM.from_pretrained(
        "mistralai/Mistral-7B-Instruct-v0.1",
        cache_dir="./.cache",
        device_map='cuda',
        quantization_config=BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=compute_type,
            )
        )
        tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
        model = PeftModel.from_pretrained(model, model_name).to("cuda")
    elif 'mistralai/Mistral-7B-Instruct-v0.1' in model_name:
        model = AutoModelForCausalLM.from_pretrained(
        "mistralai/Mistral-7B-Instruct-v0.1",
        cache_dir="./.cache",
        device_map='cuda',
        )
        tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
    else:
         raise RuntimeError(f"Model {model_name} not supported")
    return model, tokenizer


def introduction():
    with gr.Column(scale=2):
        gr.Image(
            "images/sotopia.jpg", elem_id="banner-image", show_label=False
        )
    with gr.Column(scale=5):
        gr.Markdown(
            """# Sotopia-Pi Demo
            **Chat with [Sotopia-Pi](https://github.com/sotopia-lab/sotopia-pi), brainstorm ideas, discuss your holiday plans, and more!**

            ➡️️ **Intended Use**: this demo is intended to showcase an early finetuning of [sotopia-pi-mistral-7b-BC_SR](https://huggingface.co/cmu-lti/sotopia-pi-mistral-7b-BC_SR)/

            ⚠️ **Limitations**: the model can and will produce factually incorrect information, hallucinating facts and actions. As it has not undergone any advanced tuning/alignment, it can produce problematic outputs, especially if prompted to do so. Finally, this demo is limited to a session length of about 1,000 words.

            🗄️ **Disclaimer**: User prompts and generated replies from the model may be collected by TII solely for the purpose of enhancing and refining our models. TII will not store any personally identifiable information associated with your inputs. By using this demo, users implicitly agree to these terms.
            """
        )

def create_user_agent_dropdown(environment_id):
    _, environment_dict, agent_dict, relationship_dict = get_sotopia_profiles()
    environment = environment_dict[environment_id]
    
    user_agents_list = []
    unique_agent_ids = set()
    for x, _ in relationship_dict[environment.relationship].items():
        unique_agent_ids.add(x)
    
    for agent_id in unique_agent_ids:
        user_agents_list.append((agent_dict[agent_id].name, agent_id))
    return gr.Dropdown(choices=user_agents_list, value=user_agents_list[0][1] if user_agents_list else None, label="User Agent Selection")

def create_bot_agent_dropdown(environment_id, user_agent_id):
    _, environment_dict, agent_dict, relationship_dict = get_sotopia_profiles()
    environment, user_agent = environment_dict[environment_id], agent_dict[user_agent_id]
    
    bot_agent_list = []
    for neighbor_id in relationship_dict[environment.relationship][user_agent.agent_id]:
        bot_agent_list.append((agent_dict[neighbor_id].name, neighbor_id))
        
    return gr.Dropdown(choices=bot_agent_list, value=bot_agent_list[0][1] if bot_agent_list else None,  label="Bot Agent Selection")

def create_environment_info(environment_dropdown):
    _, environment_dict, _, _ = get_sotopia_profiles()
    environment = environment_dict[environment_dropdown]
    text = environment.scenario
    return gr.Textbox(label="Scenario Information", lines=4, value=text)

def create_user_info(environment_dropdown, user_agent_dropdown):
    _, environment_dict, agent_dict, _ = get_sotopia_profiles()
    environment, user_agent = environment_dict[environment_dropdown], agent_dict[user_agent_dropdown]
    text = f"{user_agent.background} {user_agent.personality} \n {environment.agent_goals[0]}"
    return gr.Textbox(label="User Agent Profile", lines=4, value=text)

def create_bot_info(environment_dropdown, bot_agent_dropdown):
    _, environment_dict, agent_dict, _ = get_sotopia_profiles()
    environment, bot_agent = environment_dict[environment_dropdown], agent_dict[bot_agent_dropdown]
    text = f"{bot_agent.background} {bot_agent.personality} \n {environment.agent_goals[1]}"
    return gr.Textbox(label="Bot Agent Profile", lines=4, value=text)

def sotopia_info_accordion(accordion_visible=True):
    
    with gr.Accordion("Sotopia Information", open=accordion_visible):
        with gr.Column():
            model_name_dropdown = gr.Dropdown(
                choices=["cmu-lti/sotopia-pi-mistral-7b-BC_SR", "mistralai/Mistral-7B-Instruct-v0.1", "GPT3.5"],
                value="cmu-lti/sotopia-pi-mistral-7b-BC_SR",
                interactive=True,
                label="Model Selection"
            )
        with gr.Row():
            environments, _, _, _ = get_sotopia_profiles()
            environment_dropdown = gr.Dropdown(
                choices=environments,
                label="Scenario Selection",
                value=environments[0][1] if environments else None,
                interactive=True,
            )
            print(environment_dropdown.value)
            user_agent_dropdown = create_user_agent_dropdown(environment_dropdown.value)
            bot_agent_dropdown = create_bot_agent_dropdown(environment_dropdown.value, user_agent_dropdown.value)
        
        with gr.Row():
            scenario_info_display = create_environment_info(environment_dropdown.value)
            user_agent_info_display = create_user_info(environment_dropdown.value, user_agent_dropdown.value)
            bot_agent_info_display = create_bot_info(environment_dropdown.value, bot_agent_dropdown.value)

        # Update user dropdown when scenario changes
        environment_dropdown.change(fn=create_user_agent_dropdown, inputs=[environment_dropdown], outputs=[user_agent_dropdown])
        # Update bot dropdown when user or scenario changes
        user_agent_dropdown.change(fn=create_bot_agent_dropdown, inputs=[environment_dropdown, user_agent_dropdown], outputs=[bot_agent_dropdown])
        # Update scenario information when scenario changes
        environment_dropdown.change(fn=create_environment_info, inputs=[environment_dropdown], outputs=[scenario_info_display])
        # Update user agent profile when user changes
        user_agent_dropdown.change(fn=create_user_info, inputs=[environment_dropdown, user_agent_dropdown], outputs=[user_agent_info_display])
        # Update bot agent profile when bot changes
        bot_agent_dropdown.change(fn=create_bot_info, inputs=[environment_dropdown, bot_agent_dropdown], outputs=[bot_agent_info_display])

    return model_name_dropdown, environment_dropdown, user_agent_dropdown, bot_agent_dropdown

def instructions_accordion(instructions, according_visible=False):
    with gr.Accordion("Instructions", open=False, visible=according_visible):
        instructions = gr.Textbox(
            lines=10,
            value=instructions,
            interactive=False,
            placeholder="Instructions",
            show_label=False,
            max_lines=10,
            visible=False,
        )
    return instructions


def chat_tab():
    # history are input output pairs
    def run_chat(
        message,
        history,
        instructions,
        user_agent_dropdown,
        bot_agent_dropdown,
        model_selection:str
    ):
        user_name, bot_name = user_agent_dropdown.value.name, bot_agent_dropdown.value.name
        model, tokenizer = prepare_model(model_selection)
        prompt = format_sotopia_prompt(
            message, history, instructions, user_name, bot_name
        )
        input_tokens = tokenizer(
            prompt, return_tensors="pt", padding="do_not_pad"
        ).input_ids.to("cuda")
        input_length = input_tokens.shape[-1]
        output_tokens = model.generate(
            input_tokens,
            temperature=TEMPERATURE,
            top_p=TOP_P,
            max_length=MAX_TOKENS,
            pad_token_id=tokenizer.eos_token_id,
            num_return_sequences=1,
        )
        output_tokens = output_tokens[:, input_length:]
        text_output = tokenizer.decode(
            output_tokens[0], skip_special_tokens=True
        )
        output = ""
        for _ in range(5):
            try:
                output = format_bot_message(text_output)
                break
            except Exception as e:
                print(e)
                print("Retrying...")
        return output
    
    _, environment_dict, agent_dict, _ = get_sotopia_profiles()
    with gr.Column():
        with gr.Row():
            model_name_dropdown, scenario_dropdown, user_agent_dropdown, bot_agent_dropdown = sotopia_info_accordion()
            starter_prompt = gr.Textbox(value=get_starter_prompt(agent_dict[user_agent_dropdown.value], agent_dict[bot_agent_dropdown.value], environment_dict[scenario_dropdown.value]), label="Modify the prompt as needed:", visible=False)
            
        with gr.Column():
            with gr.Blocks():
                gr.ChatInterface(
                    fn=run_chat,
                    chatbot=gr.Chatbot(
                        height=620,
                        render=False,
                        show_label=False,
                        rtl=False,
                        avatar_images=(
                            "images/profile1.jpg",
                            "images/profile2.jpg",
                        ),
                    ),
                    textbox=gr.Textbox(
                        placeholder="Write your message here...",
                        render=False,
                        scale=7,
                        rtl=False,
                    ),
                    additional_inputs=[
                        starter_prompt,
                        user_agent_dropdown,
                        bot_agent_dropdown,
                        model_name_dropdown,
                    ],
                    submit_btn="Send",
                    stop_btn="Stop",
                    retry_btn="🔄 Retry",
                    undo_btn="↩️ Delete",
                    clear_btn="🗑️ Clear",
                )


def main():
    with gr.Blocks(
        css="""#chat_container {height: 820px; width: 1000px; margin-left: auto; margin-right: auto;}
               #chatbot {height: 600px; overflow: auto;}
               #create_container {height: 750px; margin-left: 0px; margin-right: 0px;}
               #tokenizer_renderer span {white-space: pre-wrap}
               """
    ) as demo:
        with gr.Row():
            introduction()
        with gr.Row():
            chat_tab()

    return demo


def start_demo():
    demo = main()
    if DEPLOYED:
        demo.queue(api_open=False).launch(show_api=False)
    else:
        demo.queue()
        demo.launch(share=False, server_name="0.0.0.0")


if __name__ == "__main__":
    get_sotopia_profiles()
    # prepare_model(DEFAULT_MODEL_SELECTION)
    start_demo()