Spaces:
Sleeping
Sleeping
File size: 12,314 Bytes
558fff7 f233163 480eb60 488f10b 2dbee31 558fff7 7f44091 488f10b 558fff7 488f10b 558fff7 488f10b 558fff7 488f10b 558fff7 488f10b 558fff7 488f10b 558fff7 488f10b 558fff7 488f10b 558fff7 be9bc89 558fff7 be9bc89 558fff7 be9bc89 558fff7 be9bc89 558fff7 488f10b 558fff7 36fa435 f233163 558fff7 36fa435 f233163 488f10b 558fff7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import numpy as np
from scipy import signal
import huggingface_hub # for loading model
import streamlit as st
# from transformers import AutoModel
from transformers import TFAutoModel
# Needed for importing torch to use in the transformers model
import torch
import tensorflow
import matplotlib.pyplot as plt
# HELLO HUGGING FACE
def basic_box_array(image_size):
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
# Creates the outside edges of the box
for i in range(image_size):
for j in range(image_size):
if i == 0 or j == 0 or i == image_size - 1 or j == image_size - 1:
A[i][j] = 1
return A
def back_slash_array(image_size):
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == j:
A[i][j] = 1
return A
def forward_slash_array(image_size):
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == (image_size - 1) - j:
A[i][j] = 1
return A
def hot_dog_array(image_size):
# Places pixels down the vertical axis to split the box
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if j == math.floor((image_size - 1) / 2) or j == math.ceil((image_size - 1) / 2):
A[i][j] = 1
return A
def hamburger_array(image_size):
# Places pixels across the horizontal axis to split the box
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == math.floor((image_size - 1) / 2) or i == math.ceil((image_size - 1) / 2):
A[i][j] = 1
return A
def center_array(image_size):
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == math.floor((image_size - 1) / 2) and j == math.ceil((image_size - 1) / 2):
A[i][j] = 1
if i == math.floor((image_size - 1) / 2) and j == math.floor((image_size - 1) / 2):
A[i][j] = 1
if j == math.ceil((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2):
A[i][j] = 1
if j == math.floor((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2):
A[i][j] = 1
return A
def update_array(array_original, array_new, image_size):
A = array_original
for i in range(image_size):
for j in range(image_size):
if array_new[i][j] == 1:
A[i][j] = 1
return A
def add_pixels(array_original, additional_pixels, image_size):
# Adds pixels to the thickness of each component of the box
A = array_original
A_updated = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for dens in range(additional_pixels):
for i in range(1, image_size - 1):
for j in range(1, image_size - 1):
if A[i - 1][j] + A[i + 1][j] + A[i][j - 1] + A[i][j + 1] > 0:
A_updated[i][j] = 1
A = update_array(A, A_updated, image_size)
return A
def basic_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Creates the outside edges of the box
# Increase the thickness of each part of the box
A = add_pixels(A, additional_pixels, image_size)
return A * density
def horizontal_vertical_box_split(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Creates the outside edges of the box
# Place pixels across the horizontal and vertical axes to split the box
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
# Increase the thickness of each part of the box
A = add_pixels(A, additional_pixels, image_size)
return A * density
def diagonal_box_split(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Creates the outside edges of the box
# Add pixels along the diagonals of the box
A = update_array(A, back_slash_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
# Adds pixels to the thickness of each component of the box
# Increase the thickness of each part of the box
A = add_pixels(A, additional_pixels, image_size)
return A * density
def back_slash_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def forward_slash_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, forward_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def hot_dog_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def hamburger_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hamburger_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def x_plus_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def forward_slash_plus_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
# A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def back_slash_plus_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
# A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def x_hot_dog_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
# A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def x_hamburger_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
# A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def center_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, center_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
########################################################################################################################
# The function to add thickness to struts in an array
def add_thickness(array_original, thickness: int) -> np.ndarray:
"""
:param array_original: [ndarray] - an array with thickness 1 of any shape type
:param thickness: [int] - the number of pixels to be activated surrounding the base shape
:return: [ndarray] - the output is a unit cell that has been convolved to expand the number of pixels activated
based on the desired thickness. The activated pixels are 1 (white) and the deactivated pixels are 0 (black)
"""
A = array_original
if thickness == 0: # want an array of all 0's for thickness = 0
A[A > 0] = 0
else:
filter_size = 2*thickness - 1 # the size of the filter needs to extend far enough to reach the base shape
filter = np.zeros((filter_size, filter_size))
filter[np.floor((filter_size - 1) / 2).astype(int), :] = filter[:, np.floor((filter_size - 1) / 2).astype(int)] =1
filter[np.ceil((filter_size - 1) / 2).astype(int), :] = filter[:, np.ceil((filter_size - 1) / 2).astype(int)] = 1
# The filter is made into a '+' shape using these functions
convolution = signal.convolve2d(A, filter, mode='same')
A = np.where(convolution <= 1, convolution, 1)
return A
# The function to efficiently combine arrays in a list
def combine_arrays(arrays):
output_array = np.sum(arrays, axis=0) # Add the list of arrays
output_array = np.array(output_array > 0, dtype=int) # Convert all values in array to 1
return output_array
########################################################################################################################
# Provide the Options for users to select from
shape_options = ("basic_box", "diagonal_box_split", "horizontal_vertical_box_split", "back_slash_box", "forward_slash_box",
"back_slash_plus_box", "forward_slash_plus_box", "hot_dog_box", "hamburger_box", "x_hamburger_box",
"x_hot_dog_box", "x_plus_box")
density_options = ["{:.2f}".format(x) for x in np.linspace(0.1, 1, 10)]
thickness_options = [str(int(x)) for x in np.linspace(0, 10, 11)]
interpolation_options = [str(int(x)) for x in [3, 5, 10, 20]]
# Provide User Options
# Select Shapes
shape_1 = st.selectbox("Shape 1", shape_options)
shape_2 = st.selectbox("Shape 2", shape_options)
# Select Density
density_1 = st.selectbox("Density 1:", density_options)
density_2 = st.selectbox("Density 2:", density_options)
# Select Thickness
thickness_1 = st.selectbox("Thickness 1", thickness_options)
thickness_2 = st.selectbox("Thickness 2", thickness_options)
# Select Interpolation Length
interp_length = st.selectbox("Interpolation Length", interpolation_options)
def generate_unit_cell(shape, density, thickness):
return globals()[shape](int(thickness), float(density), 28)
if st.button("Generate Endpoint Images"):
plt.figure(1)
st.header("Endpoints to be generated:")
plt.subplot(1, 2, 1), plt.imshow(generate_unit_cell(shape_1, density_1, thickness_1), cmap='gray', vmin=0, vmax=1)
plt.subplot(1, 2, 2), plt.imshow(generate_unit_cell(shape_2, density_2, thickness_2), cmap='gray', vmin=0, vmax=1)
plt.figure(1)
st.pyplot(plt.figure(1))
'''
# Load the models from existing huggingface model
# Load the encoder model
# encoder_model_boxes = huggingface_hub.from_pretrained_keras("cmudrc/2d-lattice-encoder")
encoder_model = TFAutoModel.from_pretrained("cmudrc/2d-lattice-encoder")
# Load the decoder model
# decoder_model_boxes = huggingface_hub.from_pretrained_keras("cmudrc/2d-lattice-decoder")
decoder_model = TFAutoModel.from_pretrained("cmudrc/2d-lattice-decoder")
'''
|