File size: 12,314 Bytes
558fff7
 
 
 
f233163
 
480eb60
 
 
488f10b
2dbee31
558fff7
7f44091
488f10b
 
 
 
 
 
 
558fff7
 
 
488f10b
 
 
 
 
 
558fff7
 
 
488f10b
 
 
 
 
 
558fff7
 
 
488f10b
558fff7
488f10b
 
 
 
 
558fff7
 
 
488f10b
558fff7
488f10b
 
 
 
 
558fff7
 
 
488f10b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
558fff7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be9bc89
 
 
 
558fff7
be9bc89
 
 
558fff7
be9bc89
 
 
558fff7
be9bc89
 
558fff7
 
488f10b
 
 
 
 
 
 
 
 
 
 
 
558fff7
 
36fa435
f233163
558fff7
36fa435
f233163
488f10b
558fff7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import numpy as np
from scipy import signal
import huggingface_hub  # for loading model
import streamlit as st
# from transformers import AutoModel
from transformers import TFAutoModel
# Needed for importing torch to use in the transformers model
import torch
import tensorflow
import matplotlib.pyplot as plt
# HELLO HUGGING FACE


def basic_box_array(image_size):
    A = numpy.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    # Creates the outside edges of the box
    for i in range(image_size):
        for j in range(image_size):
            if i == 0 or j == 0 or i == image_size - 1 or j == image_size - 1:
                A[i][j] = 1
    return A


def back_slash_array(image_size):
    A = numpy.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    for i in range(image_size):
        for j in range(image_size):
            if i == j:
                A[i][j] = 1
    return A


def forward_slash_array(image_size):
    A = numpy.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    for i in range(image_size):
        for j in range(image_size):
            if i == (image_size - 1) - j:
                A[i][j] = 1
    return A


def hot_dog_array(image_size):
    # Places pixels down the vertical axis to split the box
    A = numpy.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    for i in range(image_size):
        for j in range(image_size):
            if j == math.floor((image_size - 1) / 2) or j == math.ceil((image_size - 1) / 2):
                A[i][j] = 1
    return A


def hamburger_array(image_size):
    # Places pixels across the horizontal axis to split the box
    A = numpy.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    for i in range(image_size):
        for j in range(image_size):
            if i == math.floor((image_size - 1) / 2) or i == math.ceil((image_size - 1) / 2):
                A[i][j] = 1
    return A


def center_array(image_size):
    A = numpy.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    for i in range(image_size):
        for j in range(image_size):
            if i == math.floor((image_size - 1) / 2) and j == math.ceil((image_size - 1) / 2):
                A[i][j] = 1
            if i == math.floor((image_size - 1) / 2) and j == math.floor((image_size - 1) / 2):
                A[i][j] = 1
            if j == math.ceil((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2):
                A[i][j] = 1
            if j == math.floor((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2):
                A[i][j] = 1
    return A


def update_array(array_original, array_new, image_size):
    A = array_original
    for i in range(image_size):
        for j in range(image_size):
            if array_new[i][j] == 1:
                A[i][j] = 1
    return A


def add_pixels(array_original, additional_pixels, image_size):
    # Adds pixels to the thickness of each component of the box
    A = array_original
    A_updated = numpy.zeros((int(image_size), int(image_size)))  # Initializes A matrix with 0 values
    for dens in range(additional_pixels):
        for i in range(1, image_size - 1):
            for j in range(1, image_size - 1):
                if A[i - 1][j] + A[i + 1][j] + A[i][j - 1] + A[i][j + 1] > 0:
                    A_updated[i][j] = 1
        A = update_array(A, A_updated, image_size)
    return A


def basic_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Creates the outside edges of the box
    # Increase the thickness of each part of the box
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def horizontal_vertical_box_split(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Creates the outside edges of the box
    # Place pixels across the horizontal and vertical axes to split the box
    A = update_array(A, hot_dog_array(image_size), image_size)
    A = update_array(A, hamburger_array(image_size), image_size)
    # Increase the thickness of each part of the box
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def diagonal_box_split(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Creates the outside edges of the box

    # Add pixels along the diagonals of the box
    A = update_array(A, back_slash_array(image_size), image_size)
    A = update_array(A, forward_slash_array(image_size), image_size)

    # Adds pixels to the thickness of each component of the box
    # Increase the thickness of each part of the box
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def back_slash_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, back_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def forward_slash_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, forward_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def hot_dog_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, hot_dog_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def hamburger_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, hamburger_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def x_plus_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, hot_dog_array(image_size), image_size)
    A = update_array(A, hamburger_array(image_size), image_size)
    A = update_array(A, forward_slash_array(image_size), image_size)
    A = update_array(A, back_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def forward_slash_plus_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, hot_dog_array(image_size), image_size)
    A = update_array(A, hamburger_array(image_size), image_size)
    A = update_array(A, forward_slash_array(image_size), image_size)
    # A = update_array(A, back_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def back_slash_plus_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, hot_dog_array(image_size), image_size)
    A = update_array(A, hamburger_array(image_size), image_size)
    # A = update_array(A, forward_slash_array(image_size), image_size)
    A = update_array(A, back_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def x_hot_dog_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, hot_dog_array(image_size), image_size)
    # A = update_array(A, hamburger_array(image_size), image_size)
    A = update_array(A, forward_slash_array(image_size), image_size)
    A = update_array(A, back_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def x_hamburger_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    # A = update_array(A, hot_dog_array(image_size), image_size)
    A = update_array(A, hamburger_array(image_size), image_size)
    A = update_array(A, forward_slash_array(image_size), image_size)
    A = update_array(A, back_slash_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


def center_box(additional_pixels, density, image_size):
    A = basic_box_array(image_size)  # Initializes A matrix with 0 values
    A = update_array(A, center_array(image_size), image_size)
    A = add_pixels(A, additional_pixels, image_size)
    return A * density


########################################################################################################################
# The function to add thickness to struts in an array
def add_thickness(array_original, thickness: int) -> np.ndarray:
    """
    :param array_original: [ndarray] - an array with thickness 1 of any shape type
    :param thickness: [int] - the number of pixels to be activated surrounding the base shape
    :return: [ndarray] - the output is a unit cell that has been convolved to expand the number of pixels activated
    based on the desired thickness. The activated pixels are 1 (white) and the deactivated pixels are 0 (black)
    """
    A = array_original
    if thickness == 0:  # want an array of all 0's for thickness = 0
        A[A > 0] = 0
    else:
        filter_size = 2*thickness - 1 # the size of the filter needs to extend far enough to reach the base shape
        filter = np.zeros((filter_size, filter_size))
        filter[np.floor((filter_size - 1) / 2).astype(int), :] = filter[:, np.floor((filter_size - 1) / 2).astype(int)] =1
        filter[np.ceil((filter_size - 1) / 2).astype(int), :] = filter[:, np.ceil((filter_size - 1) / 2).astype(int)] = 1
        # The filter is made into a '+' shape using these functions
        convolution = signal.convolve2d(A, filter, mode='same')
        A = np.where(convolution <= 1, convolution, 1)
    return A


# The function to efficiently combine arrays in a list
def combine_arrays(arrays):
    output_array = np.sum(arrays, axis=0)  # Add the list of arrays
    output_array = np.array(output_array > 0, dtype=int)  # Convert all values in array to 1
    return output_array


########################################################################################################################
# Provide the Options for users to select from
shape_options = ("basic_box", "diagonal_box_split", "horizontal_vertical_box_split", "back_slash_box", "forward_slash_box",
"back_slash_plus_box", "forward_slash_plus_box", "hot_dog_box", "hamburger_box", "x_hamburger_box",
"x_hot_dog_box", "x_plus_box")
density_options = ["{:.2f}".format(x) for x in np.linspace(0.1, 1, 10)]
thickness_options = [str(int(x)) for x in np.linspace(0, 10, 11)]
interpolation_options = [str(int(x)) for x in [3, 5, 10, 20]]

# Provide User Options
# Select Shapes
shape_1 = st.selectbox("Shape 1", shape_options)
shape_2 = st.selectbox("Shape 2", shape_options)

# Select Density
density_1 = st.selectbox("Density 1:", density_options)
density_2 = st.selectbox("Density 2:", density_options)

# Select Thickness
thickness_1 = st.selectbox("Thickness 1", thickness_options)
thickness_2 = st.selectbox("Thickness 2", thickness_options)

# Select Interpolation Length
interp_length = st.selectbox("Interpolation Length", interpolation_options)


def generate_unit_cell(shape, density, thickness):
    return globals()[shape](int(thickness), float(density), 28)

if st.button("Generate Endpoint Images"):
    plt.figure(1)
    st.header("Endpoints to be generated:")
    plt.subplot(1, 2, 1), plt.imshow(generate_unit_cell(shape_1, density_1, thickness_1), cmap='gray', vmin=0, vmax=1)
    plt.subplot(1, 2, 2), plt.imshow(generate_unit_cell(shape_2, density_2, thickness_2), cmap='gray', vmin=0, vmax=1)
    plt.figure(1)
    st.pyplot(plt.figure(1))

'''
# Load the models from existing huggingface model
# Load the encoder model
# encoder_model_boxes = huggingface_hub.from_pretrained_keras("cmudrc/2d-lattice-encoder")
encoder_model = TFAutoModel.from_pretrained("cmudrc/2d-lattice-encoder")
# Load the decoder model
# decoder_model_boxes = huggingface_hub.from_pretrained_keras("cmudrc/2d-lattice-decoder")
decoder_model = TFAutoModel.from_pretrained("cmudrc/2d-lattice-decoder")
'''