Spaces:
Sleeping
Sleeping
import numpy as np | |
from scipy import signal | |
import math | |
import matplotlib.pyplot as plt | |
from huggingface_hub import from_pretrained_keras | |
import streamlit as st | |
from elasticity import elasticity | |
import io | |
from voxel_to_SDF_to_STL import voxel_to_sdf, sdf_to_stl, single_body_check | |
from PIL import Image | |
import time | |
# Needed in requirements.txt for importing to use in the transformers model | |
import tensorflow | |
# HELLO HUGGING FACE | |
######################################################################################################################## | |
# Define the piecewise functions to create each of the possible shapes | |
def basic_box_array(image_size): | |
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values | |
# Creates the outside edges of the box | |
for i in range(image_size): | |
for j in range(image_size): | |
if i == 0 or j == 0 or i == image_size - 1 or j == image_size - 1: | |
A[i][j] = 1 | |
return A | |
def back_slash_array(image_size): | |
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values | |
for i in range(image_size): | |
for j in range(image_size): | |
if i == j: | |
A[i][j] = 1 | |
return A | |
def forward_slash_array(image_size): | |
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values | |
for i in range(image_size): | |
for j in range(image_size): | |
if i == (image_size - 1) - j: | |
A[i][j] = 1 | |
return A | |
def hot_dog_array(image_size): | |
# Places pixels down the vertical axis to split the box | |
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values | |
for i in range(image_size): | |
for j in range(image_size): | |
if j == math.floor((image_size - 1) / 2) or j == math.ceil((image_size - 1) / 2): | |
A[i][j] = 1 | |
return A | |
def hamburger_array(image_size): | |
# Places pixels across the horizontal axis to split the box | |
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values | |
for i in range(image_size): | |
for j in range(image_size): | |
if i == math.floor((image_size - 1) / 2) or i == math.ceil((image_size - 1) / 2): | |
A[i][j] = 1 | |
return A | |
def center_array(image_size): | |
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values | |
for i in range(image_size): | |
for j in range(image_size): | |
if i == math.floor((image_size - 1) / 2) and j == math.ceil((image_size - 1) / 2): | |
A[i][j] = 1 | |
if i == math.floor((image_size - 1) / 2) and j == math.floor((image_size - 1) / 2): | |
A[i][j] = 1 | |
if j == math.ceil((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2): | |
A[i][j] = 1 | |
if j == math.floor((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2): | |
A[i][j] = 1 | |
return A | |
def update_array(array_original, array_new, image_size): | |
A = array_original | |
for i in range(image_size): | |
for j in range(image_size): | |
if array_new[i][j] == 1: | |
A[i][j] = 1 | |
return A | |
def add_pixels(array_original, additional_pixels, image_size): | |
# Adds pixels to the thickness of each component of the box | |
A = array_original | |
A_updated = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values | |
for dens in range(additional_pixels): | |
for i in range(1, image_size - 1): | |
for j in range(1, image_size - 1): | |
if A[i - 1][j] + A[i + 1][j] + A[i][j - 1] + A[i][j + 1] > 0: | |
A_updated[i][j] = 1 | |
A = update_array(A, A_updated, image_size) | |
return A | |
######################################################################################################################## | |
# Create the desired shape using the density and thickness | |
def basic_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Creates the outside edges of the box | |
# Increase the thickness of each part of the box | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def horizontal_vertical_box_split(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Creates the outside edges of the box | |
# Place pixels across the horizontal and vertical axes to split the box | |
A = update_array(A, hot_dog_array(image_size), image_size) | |
A = update_array(A, hamburger_array(image_size), image_size) | |
# Increase the thickness of each part of the box | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def diagonal_box_split(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Creates the outside edges of the box | |
# Add pixels along the diagonals of the box | |
A = update_array(A, back_slash_array(image_size), image_size) | |
A = update_array(A, forward_slash_array(image_size), image_size) | |
# Adds pixels to the thickness of each component of the box | |
# Increase the thickness of each part of the box | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def back_slash_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
A = update_array(A, back_slash_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def forward_slash_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
A = update_array(A, forward_slash_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def hot_dog_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
A = update_array(A, hot_dog_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def hamburger_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
A = update_array(A, hamburger_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def x_plus_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
A = update_array(A, hot_dog_array(image_size), image_size) | |
A = update_array(A, hamburger_array(image_size), image_size) | |
A = update_array(A, forward_slash_array(image_size), image_size) | |
A = update_array(A, back_slash_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def forward_slash_plus_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
A = update_array(A, hot_dog_array(image_size), image_size) | |
A = update_array(A, hamburger_array(image_size), image_size) | |
A = update_array(A, forward_slash_array(image_size), image_size) | |
# A = update_array(A, back_slash_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def back_slash_plus_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
A = update_array(A, hot_dog_array(image_size), image_size) | |
A = update_array(A, hamburger_array(image_size), image_size) | |
# A = update_array(A, forward_slash_array(image_size), image_size) | |
A = update_array(A, back_slash_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def x_hot_dog_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
A = update_array(A, hot_dog_array(image_size), image_size) | |
# A = update_array(A, hamburger_array(image_size), image_size) | |
A = update_array(A, forward_slash_array(image_size), image_size) | |
A = update_array(A, back_slash_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def x_hamburger_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
# A = update_array(A, hot_dog_array(image_size), image_size) | |
A = update_array(A, hamburger_array(image_size), image_size) | |
A = update_array(A, forward_slash_array(image_size), image_size) | |
A = update_array(A, back_slash_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def center_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
A = update_array(A, center_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
######################################################################################################################## | |
# The function to add thickness to struts in an array | |
def add_thickness(array_original, thickness: int) -> np.ndarray: | |
""" | |
:param array_original: [ndarray] - an array with thickness 1 of any shape type | |
:param thickness: [int] - the number of pixels to be activated surrounding the base shape | |
:return: [ndarray] - the output is a unit cell that has been convolved to expand the number of pixels activated | |
based on the desired thickness. The activated pixels are 1 (white) and the deactivated pixels are 0 (black) | |
""" | |
A = array_original | |
if thickness == 0: # want an array of all 0's for thickness = 0 | |
A[A > 0] = 0 | |
else: | |
filter_size = 2*thickness - 1 # the size of the filter needs to extend far enough to reach the base shape | |
filter = np.zeros((filter_size, filter_size)) | |
filter[np.floor((filter_size - 1) / 2).astype(int), :] = filter[:, np.floor((filter_size - 1) / 2).astype(int)] =1 | |
filter[np.ceil((filter_size - 1) / 2).astype(int), :] = filter[:, np.ceil((filter_size - 1) / 2).astype(int)] = 1 | |
# The filter is made into a '+' shape using these functions | |
convolution = signal.convolve2d(A, filter, mode='same') | |
A = np.where(convolution <= 1, convolution, 1) | |
return A | |
# The function to efficiently combine arrays in a list | |
def combine_arrays(arrays): | |
output_array = np.sum(arrays, axis=0) # Add the list of arrays | |
output_array = np.array(output_array > 0, dtype=int) # Convert all values in array to 1 | |
return output_array | |
######################################################################################################################## | |
# Explain the App | |
st.header("Multi-Lattice Generator Through a VAE Model") | |
st.write("Shape: the type of shape the lattice will have") | |
st.write("Density: the pixel intensity of each activated pixel") | |
st.write("Thickness: the additional pixels added to the base shape") | |
st.write("Interpolation Length: the number of internal interpolation points that will exist in the interpolation") | |
######################################################################################################################## | |
# Provide the Options for users to select from | |
shape_options = ("basic_box", "diagonal_box_split", "horizontal_vertical_box_split", "back_slash_box", "forward_slash_box", | |
"back_slash_plus_box", "forward_slash_plus_box", "hot_dog_box", "hamburger_box", "x_hamburger_box", | |
"x_hot_dog_box", "x_plus_box") | |
density_options = ["{:.2f}".format(x) for x in np.linspace(0.1, 1, 10)] | |
thickness_options = [str(int(x)) for x in np.linspace(0, 10, 11)] | |
interpolation_options = [str(int(x)) for x in np.linspace(2, 20, 19)] | |
# Provide User Options | |
st.header("Option 1: Perform a Linear Interpolation") | |
# Select Shapes | |
shape_1 = st.selectbox("Shape 1", shape_options) | |
shape_2 = st.selectbox("Shape 2", shape_options) | |
# Select Density | |
density_1 = st.selectbox("Density 1:", density_options, index=len(density_options)-1) | |
density_2 = st.selectbox("Density 2:", density_options, index=len(density_options)-1) | |
# Select Thickness | |
thickness_1 = st.selectbox("Thickness 1", thickness_options) | |
thickness_2 = st.selectbox("Thickness 2", thickness_options) | |
# Select Interpolation Length | |
interp_length = st.selectbox("Interpolation Length", interpolation_options, index=2) | |
# Define the function to generate unit cells based on user inputs | |
def generate_unit_cell(shape, density, thickness): | |
return globals()[shape](int(thickness), float(density), 28) | |
def display_arrays(array1, array2, label_1, label_2): | |
# A Function to plot two arrays side by side in streamlit | |
# Create two columns | |
col1, col2 = st.columns(2) | |
# Populate the first column with array1 | |
col1.header(label_1) | |
col1.write(array1) | |
# Populate the second column with array2 | |
col2.header(label_2) | |
col2.write(array2) | |
# Generate the endpoints | |
number_1 = generate_unit_cell(shape_1, density_1, thickness_1) | |
number_2 = generate_unit_cell(shape_2, density_2, thickness_2) | |
# Calculate the elasticity for the shapes: | |
elasticity_1 = elasticity(number_1) | |
elasticity_2 = elasticity(number_2) | |
# Display the endpoints to the user | |
if st.button("Generate Endpoint Images and Elasticity Tensors"): | |
plt.figure(1) | |
st.header("Endpoints to be generated:") | |
plt.subplot(1, 2, 1), plt.imshow(number_1, cmap='gray', vmin=0, vmax=1), plt.title("Shape 1:") | |
display_arrays(elasticity_1, elasticity_2, "Elasticity Tensor of Shape 1", "Elasticity Tensor of Shape 2") | |
plt.subplot(1, 2, 2), plt.imshow(number_2, cmap='gray', vmin=0, vmax=1), plt.title("Shape 2:") | |
plt.figure(1) | |
st.pyplot(plt.figure(1)) | |
######################################################################################################################## | |
# Load the models from existing huggingface model | |
# Load the encoder model | |
encoder_model_boxes = from_pretrained_keras("cmudrc/2d-lattice-encoder") | |
# Load the decoder model | |
decoder_model_boxes = from_pretrained_keras("cmudrc/2d-lattice-decoder") | |
######################################################################################################################## | |
# Encode the Desired Endpoints | |
# resize the array to match the prediction size requirement | |
number_1_expand = np.expand_dims(np.expand_dims(number_1, axis=2), axis=0) | |
number_2_expand = np.expand_dims(np.expand_dims(number_2, axis=2), axis=0) | |
# Determine the latent point that will represent our desired number | |
latent_point_1 = encoder_model_boxes.predict(number_1_expand)[0] | |
latent_point_2 = encoder_model_boxes.predict(number_2_expand)[0] | |
latent_dimensionality = len(latent_point_1) # define the dimensionality of the latent space | |
######################################################################################################################## | |
# Establish the Framework for a LINEAR Interpolation | |
num_interp = int(interp_length) # the number of images to be pictured | |
latent_matrix = [] # This will contain the latent points of the interpolation | |
for column in range(latent_dimensionality): | |
new_column = np.linspace(latent_point_1[column], latent_point_2[column], num_interp) | |
latent_matrix.append(new_column) | |
latent_matrix = np.array(latent_matrix).T # Transposes the matrix so that each row can be easily indexed | |
######################################################################################################################## | |
# Create a gif from an interpolation | |
def interpolate_gif(decoder, latent_endpoint_1, latent_endpoint_2, n=100): | |
# z = np.stack([latent_endpoint_1 + (latent_endpoint_2 - latent_endpoint_1) * t for t in np.linspace(0, 1, n)]) | |
# interpolate_list = decoder.predict(z) | |
# interpolate_list = (interpolate_list * 255).astype(np.uint8) | |
# images_list = [Image.fromarray(img.reshape(28, 28)).resize((256, 256)) for img in interpolate_list] | |
# images_list = images_list + images_list[::-1] # loop back beginning | |
predicted_interps = [] | |
interp_latent = np.linspace(latent_endpoint_1, latent_endpoint_2, n) | |
figure = np.zeros((28, 28 * n)) | |
for i in range(n): | |
generated_image = decoder.predict(np.array([interp_latent[i]]))[0] | |
figure[0:28, i * 28:(i + 1) * 28, ] = generated_image[:, :, -1] | |
predicted_interps.append(generated_image[:, :, -1]) | |
# Regular Save for GIF | |
# images_list[0].save(f'{filename}.gif',save_all=True,append_images=images_list[1:],loop=1) | |
images_list = [Image.fromarray(img.reshape(28, 28)).resize((256, 256)) for img in predicted_interps] | |
images_list = images_list + images_list[::-1] # loop back beginning | |
# Create a BytesIO object to hold the GIF data | |
gif_bytes = io.BytesIO() | |
images_list[0].save( | |
gif_bytes, | |
format='GIF', | |
save_all=True, | |
append_images=images_list[1:], | |
loop=0, duration=100) # Set loop to 0 for infinite looping | |
# Reset the BytesIO object to the beginning | |
gif_bytes.seek(0) | |
st.video(gif_bytes) | |
# return gif_bytes | |
######################################################################################################################## | |
# Create an STL file from an interpolation | |
def convert_to_2_5d_sdf(interpolation, voxel_threshold, pixel_thickness): | |
# Thresholding determines the distance from the SDF that is used, the threshold provided is a divisor | |
# 1. Convert the interpolation into a 3D structure | |
interpolation_3d = [interpolation] * pixel_thickness | |
# 2. Convert the voxels into an SDF | |
sdf = voxel_to_sdf(interpolation_3d, voxel_threshold) | |
return sdf | |
def convert_sdf_to_stl(sdf, threshold_divisor): | |
# 3. Check if the SDF is a single body, then convert into an STL | |
if single_body_check(sdf, threshold_divisor): | |
# Thresholding determines the distance from the SDF that is used, the thresdhold provided is a divisor | |
stl = sdf_to_stl(sdf, threshold_divisor) | |
return stl | |
######################################################################################################################## | |
# Plotting the Interpolation in 2D Using Chosen Points | |
if st.checkbox("Generate Linear Interpolation"): | |
# Generate the set of latent points in the interpolation | |
linear_interp_latent = np.linspace(latent_point_1, latent_point_2, num_interp) | |
linear_predicted_interps = [] | |
figure_2 = np.zeros((28, 28 * num_interp)) | |
# Predict the image for each latent point | |
for i in range(num_interp): | |
generated_image = decoder_model_boxes.predict(np.array([linear_interp_latent[i]]))[0] | |
figure_2[0:28, i * 28:(i + 1) * 28, ] = generated_image[:, :, -1] | |
linear_predicted_interps.append(generated_image[:, :, -1]) | |
st.image(figure_2, width=600) | |
# Code to display a gif | |
# interpolate_gif(decoder_model_boxes, latent_point_1, latent_point_2) | |
# Code for generating the STL file | |
st.subheader("Create an STL file from the extruded image!") | |
if st.checkbox("Select to begin model generation"): | |
# Creating an STL file of the linear interpolation | |
pixel_thickness_input = st.number_input("(1) Select a pixel thickness for the 3D model: ", min_value=1, value=28) | |
# Set the image threshold for binarization | |
voxel_threshold_input = st.slider("(2) Select a value to threshold the image (Recommend <= 0.1) " | |
"Higher values will result in less defined shapes: ", | |
min_value=0.0001, max_value=0.999, value=0.1, key='voxel_threshold') | |
# Create the SDF File | |
linear_sdf = convert_to_2_5d_sdf(figure_2, voxel_threshold_input, pixel_thickness_input) | |
# Set the threshold for the Mesh | |
threshold_divisor_input = st.slider("(3) Choose a threshold divisor for the SDF: ", min_value=0.0, | |
max_value=5.0, | |
value=3.0, key="divisor_threshold") | |
linear_sdf_min = np.min(linear_sdf) | |
linear_sdf_max = np.max(linear_sdf) | |
st.info("Lower SDF Thresholds will result in smoother, but less accurate shapes. Higher thresholds will result in more " | |
"rugged shapes, but they are more accurate. Suggested value for threshold is less than: " + | |
str((linear_sdf_max - abs(linear_sdf_min)) / 2)) | |
if st.button("Generate STL Model"): | |
# Generate the STL File | |
linear_stl = convert_sdf_to_stl(linear_sdf, threshold_divisor=threshold_divisor_input) | |
# Download the STL File | |
with open(linear_stl, 'rb') as file: | |
st.download_button( | |
label='Download STL', | |
data=file, | |
file_name='linear_interpolation.stl', | |
key='stl-download' | |
) | |
######################################################################################################################## | |
# Provide User Options | |
st.header("Option 2: Perform a Mesh Interpolation") | |
st.write("The four corners of this mesh are defined using the shapes in both Option 1 and Option 2") | |
# Select Shapes | |
shape_3 = st.selectbox("Shape 3", shape_options) | |
shape_4 = st.selectbox("Shape 4", shape_options) | |
# Select Density | |
density_3 = st.selectbox("Density 3:", density_options, index=len(density_options)-1) | |
density_4 = st.selectbox("Density 4:", density_options, index=len(density_options)-1) | |
# Select Thickness | |
thickness_3 = st.selectbox("Thickness 3", thickness_options) | |
thickness_4 = st.selectbox("Thickness 4", thickness_options) | |
# Generate the endpoints | |
number_3 = generate_unit_cell(shape_3, density_3, thickness_3) | |
number_4 = generate_unit_cell(shape_4, density_4, thickness_4) | |
# Display the endpoints to the user | |
if st.button("Generate Endpoint Images for Mesh and Elasticity Tensors"): | |
plt.figure(1) | |
st.header("Endpoints to be generated:") | |
elasticity_3 = elasticity(number_3) | |
elasticity_4 = elasticity(number_4) | |
display_arrays(elasticity_1, elasticity_2, "Elasticity Tensor of Shape 1", "Elasticity Tensor of Shape 2") | |
display_arrays(elasticity_3, elasticity_4, "Elasticity Tensor of Shape 3", "Elasticity Tensor of Shape 4") | |
plt.subplot(2, 2, 1), plt.imshow(number_1, cmap='gray', vmin=0, vmax=1) | |
plt.subplot(2, 2, 2), plt.imshow(number_2, cmap='gray', vmin=0, vmax=1) | |
plt.subplot(2, 2, 3), plt.imshow(number_3, cmap='gray', vmin=0, vmax=1) | |
plt.subplot(2, 2, 4), plt.imshow(number_4, cmap='gray', vmin=0, vmax=1) | |
plt.figure(1) | |
st.pyplot(plt.figure(1)) | |
######################################################################################################################## | |
# Encode the Desired Endpoints | |
# resize the array to match the prediction size requirement | |
number_3_expand = np.expand_dims(np.expand_dims(number_3, axis=2), axis=0) | |
number_4_expand = np.expand_dims(np.expand_dims(number_4, axis=2), axis=0) | |
# Determine the latent point that will represent our desired number | |
latent_point_3 = encoder_model_boxes.predict(number_3_expand)[0] | |
latent_point_4 = encoder_model_boxes.predict(number_4_expand)[0] | |
latent_dimensionality = len(latent_point_1) # define the dimensionality of the latent space | |
######################################################################################################################## | |
# Plot a Mesh Gridded Interpolation | |
if st.checkbox("Generate Mesh Interpolation"): | |
latent_matrix_2 = [] # This will contain the latent points of the interpolation | |
for column in range(latent_dimensionality): | |
new_column = np.linspace(latent_point_3[column], latent_point_4[column], num_interp) | |
latent_matrix_2.append(new_column) | |
latent_matrix_2 = np.array(latent_matrix_2).T # Transposes the matrix so that each row can be easily indexed | |
mesh = [] # This will create a mesh by interpolating between the two interpolations | |
for column in range(num_interp): | |
row = np.linspace(latent_matrix[column], latent_matrix_2[column], num_interp) | |
mesh.append(row) | |
mesh = np.transpose(mesh, axes=(1, 0, 2)) # Transpose the array so it matches the original interpolation | |
generator_model = decoder_model_boxes | |
figure_3 = np.zeros((28 * num_interp, 28 * num_interp)) | |
mesh_predicted_interps = [] | |
for i in range(num_interp): | |
for j in range(num_interp): | |
generated_image = generator_model.predict(np.array([mesh[i][j]]))[0] | |
figure_3[i * 28:(i + 1) * 28, j * 28:(j + 1) * 28, ] = generated_image[:, :, -1] | |
mesh_predicted_interps.append(generated_image[:, :, -1]) | |
st.image(figure_3, width=600) | |
# Code for generating the STL file | |
st.subheader("Create an STL file from the extruded image!") | |
if st.checkbox("Select to begin model generation"): | |
# Creating an STL file of the linear interpolation | |
mesh_pixel_thickness_input = st.number_input("(1) Select a pixel thickness for the 3D model: ", min_value=1, | |
value=28) | |
# Set the image threshold for binarization | |
mesh_voxel_threshold_input = st.slider("(2) Select a value to threshold the image (Recommend <= 0.1) " | |
"Higher values will result in less defined shapes: ", | |
min_value=0.0001, max_value=0.999, value=0.1, key='voxel_threshold') | |
# Create the SDF File | |
mesh_sdf = convert_to_2_5d_sdf(figure_3, mesh_voxel_threshold_input, mesh_pixel_thickness_input) | |
# Set the threshold for the Mesh | |
mesh_threshold_divisor_input = st.slider("(3) Choose a threshold divisor for the SDF: ", min_value=0.0, | |
max_value=5.0, | |
value=3.0, key="divisor_threshold") | |
mesh_sdf_min = np.min(mesh_sdf) | |
mesh_sdf_max = np.max(mesh_sdf) | |
st.info( | |
"Lower SDF Thresholds will result in smoother, but less accurate shapes. Higher thresholds will result in more " | |
"rugged shapes, but they are more accurate. Suggested value for threshold is less than: " + | |
str((mesh_sdf_max - abs(mesh_sdf_min)) / 2)) | |
if st.button("Generate STL Model"): | |
# Generate the STL File | |
linear_stl = convert_sdf_to_stl(mesh_sdf, threshold_divisor=mesh_threshold_divisor_input) | |
# Download the STL File | |
with open(linear_stl, 'rb') as file: | |
st.download_button( | |
label='Download STL', | |
data=file, | |
file_name='interpolation.stl', | |
key='stl-download' | |
) |