Spaces:
Sleeping
Sleeping
Commit
·
13eeb4f
1
Parent(s):
488f10b
Updating to get the model imports to work
Browse files- app.py +13 -13
- requirements.txt +0 -4
app.py
CHANGED
|
@@ -1,18 +1,19 @@
|
|
| 1 |
import numpy as np
|
| 2 |
from scipy import signal
|
| 3 |
-
import
|
|
|
|
| 4 |
import streamlit as st
|
| 5 |
# from transformers import AutoModel
|
| 6 |
-
from transformers import TFAutoModel
|
| 7 |
# Needed for importing torch to use in the transformers model
|
| 8 |
-
import torch
|
| 9 |
-
import tensorflow
|
| 10 |
import matplotlib.pyplot as plt
|
| 11 |
# HELLO HUGGING FACE
|
| 12 |
|
| 13 |
|
| 14 |
def basic_box_array(image_size):
|
| 15 |
-
A =
|
| 16 |
# Creates the outside edges of the box
|
| 17 |
for i in range(image_size):
|
| 18 |
for j in range(image_size):
|
|
@@ -22,7 +23,7 @@ def basic_box_array(image_size):
|
|
| 22 |
|
| 23 |
|
| 24 |
def back_slash_array(image_size):
|
| 25 |
-
A =
|
| 26 |
for i in range(image_size):
|
| 27 |
for j in range(image_size):
|
| 28 |
if i == j:
|
|
@@ -31,7 +32,7 @@ def back_slash_array(image_size):
|
|
| 31 |
|
| 32 |
|
| 33 |
def forward_slash_array(image_size):
|
| 34 |
-
A =
|
| 35 |
for i in range(image_size):
|
| 36 |
for j in range(image_size):
|
| 37 |
if i == (image_size - 1) - j:
|
|
@@ -41,7 +42,7 @@ def forward_slash_array(image_size):
|
|
| 41 |
|
| 42 |
def hot_dog_array(image_size):
|
| 43 |
# Places pixels down the vertical axis to split the box
|
| 44 |
-
A =
|
| 45 |
for i in range(image_size):
|
| 46 |
for j in range(image_size):
|
| 47 |
if j == math.floor((image_size - 1) / 2) or j == math.ceil((image_size - 1) / 2):
|
|
@@ -51,7 +52,7 @@ def hot_dog_array(image_size):
|
|
| 51 |
|
| 52 |
def hamburger_array(image_size):
|
| 53 |
# Places pixels across the horizontal axis to split the box
|
| 54 |
-
A =
|
| 55 |
for i in range(image_size):
|
| 56 |
for j in range(image_size):
|
| 57 |
if i == math.floor((image_size - 1) / 2) or i == math.ceil((image_size - 1) / 2):
|
|
@@ -60,7 +61,7 @@ def hamburger_array(image_size):
|
|
| 60 |
|
| 61 |
|
| 62 |
def center_array(image_size):
|
| 63 |
-
A =
|
| 64 |
for i in range(image_size):
|
| 65 |
for j in range(image_size):
|
| 66 |
if i == math.floor((image_size - 1) / 2) and j == math.ceil((image_size - 1) / 2):
|
|
@@ -86,7 +87,7 @@ def update_array(array_original, array_new, image_size):
|
|
| 86 |
def add_pixels(array_original, additional_pixels, image_size):
|
| 87 |
# Adds pixels to the thickness of each component of the box
|
| 88 |
A = array_original
|
| 89 |
-
A_updated =
|
| 90 |
for dens in range(additional_pixels):
|
| 91 |
for i in range(1, image_size - 1):
|
| 92 |
for j in range(1, image_size - 1):
|
|
@@ -278,7 +279,6 @@ if st.button("Generate Endpoint Images"):
|
|
| 278 |
plt.figure(1)
|
| 279 |
st.pyplot(plt.figure(1))
|
| 280 |
|
| 281 |
-
'''
|
| 282 |
# Load the models from existing huggingface model
|
| 283 |
# Load the encoder model
|
| 284 |
# encoder_model_boxes = huggingface_hub.from_pretrained_keras("cmudrc/2d-lattice-encoder")
|
|
@@ -286,5 +286,5 @@ encoder_model = TFAutoModel.from_pretrained("cmudrc/2d-lattice-encoder")
|
|
| 286 |
# Load the decoder model
|
| 287 |
# decoder_model_boxes = huggingface_hub.from_pretrained_keras("cmudrc/2d-lattice-decoder")
|
| 288 |
decoder_model = TFAutoModel.from_pretrained("cmudrc/2d-lattice-decoder")
|
| 289 |
-
|
| 290 |
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
from scipy import signal
|
| 3 |
+
import math
|
| 4 |
+
# import huggingface_hub # for loading model
|
| 5 |
import streamlit as st
|
| 6 |
# from transformers import AutoModel
|
| 7 |
+
# from transformers import TFAutoModel
|
| 8 |
# Needed for importing torch to use in the transformers model
|
| 9 |
+
# import torch
|
| 10 |
+
# import tensorflow
|
| 11 |
import matplotlib.pyplot as plt
|
| 12 |
# HELLO HUGGING FACE
|
| 13 |
|
| 14 |
|
| 15 |
def basic_box_array(image_size):
|
| 16 |
+
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
| 17 |
# Creates the outside edges of the box
|
| 18 |
for i in range(image_size):
|
| 19 |
for j in range(image_size):
|
|
|
|
| 23 |
|
| 24 |
|
| 25 |
def back_slash_array(image_size):
|
| 26 |
+
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
| 27 |
for i in range(image_size):
|
| 28 |
for j in range(image_size):
|
| 29 |
if i == j:
|
|
|
|
| 32 |
|
| 33 |
|
| 34 |
def forward_slash_array(image_size):
|
| 35 |
+
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
| 36 |
for i in range(image_size):
|
| 37 |
for j in range(image_size):
|
| 38 |
if i == (image_size - 1) - j:
|
|
|
|
| 42 |
|
| 43 |
def hot_dog_array(image_size):
|
| 44 |
# Places pixels down the vertical axis to split the box
|
| 45 |
+
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
| 46 |
for i in range(image_size):
|
| 47 |
for j in range(image_size):
|
| 48 |
if j == math.floor((image_size - 1) / 2) or j == math.ceil((image_size - 1) / 2):
|
|
|
|
| 52 |
|
| 53 |
def hamburger_array(image_size):
|
| 54 |
# Places pixels across the horizontal axis to split the box
|
| 55 |
+
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
| 56 |
for i in range(image_size):
|
| 57 |
for j in range(image_size):
|
| 58 |
if i == math.floor((image_size - 1) / 2) or i == math.ceil((image_size - 1) / 2):
|
|
|
|
| 61 |
|
| 62 |
|
| 63 |
def center_array(image_size):
|
| 64 |
+
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
| 65 |
for i in range(image_size):
|
| 66 |
for j in range(image_size):
|
| 67 |
if i == math.floor((image_size - 1) / 2) and j == math.ceil((image_size - 1) / 2):
|
|
|
|
| 87 |
def add_pixels(array_original, additional_pixels, image_size):
|
| 88 |
# Adds pixels to the thickness of each component of the box
|
| 89 |
A = array_original
|
| 90 |
+
A_updated = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
| 91 |
for dens in range(additional_pixels):
|
| 92 |
for i in range(1, image_size - 1):
|
| 93 |
for j in range(1, image_size - 1):
|
|
|
|
| 279 |
plt.figure(1)
|
| 280 |
st.pyplot(plt.figure(1))
|
| 281 |
|
|
|
|
| 282 |
# Load the models from existing huggingface model
|
| 283 |
# Load the encoder model
|
| 284 |
# encoder_model_boxes = huggingface_hub.from_pretrained_keras("cmudrc/2d-lattice-encoder")
|
|
|
|
| 286 |
# Load the decoder model
|
| 287 |
# decoder_model_boxes = huggingface_hub.from_pretrained_keras("cmudrc/2d-lattice-decoder")
|
| 288 |
decoder_model = TFAutoModel.from_pretrained("cmudrc/2d-lattice-decoder")
|
| 289 |
+
|
| 290 |
|
requirements.txt
CHANGED
|
@@ -1,8 +1,4 @@
|
|
| 1 |
-
huggingface_hub==0.12.0
|
| 2 |
matplotlib==3.5.2
|
| 3 |
numpy==1.21.5
|
| 4 |
scipy==1.9.1
|
| 5 |
streamlit==1.18.1
|
| 6 |
-
tensorflow==2.10.0
|
| 7 |
-
torch==2.0.0
|
| 8 |
-
transformers==4.26.0
|
|
|
|
|
|
|
| 1 |
matplotlib==3.5.2
|
| 2 |
numpy==1.21.5
|
| 3 |
scipy==1.9.1
|
| 4 |
streamlit==1.18.1
|
|
|
|
|
|
|
|
|