Spaces:
Sleeping
Sleeping
Commit
·
8ce1c5e
1
Parent(s):
c4ca994
Updating to get the model imports to work
Browse files
app.py
CHANGED
@@ -1,18 +1,17 @@
|
|
1 |
import numpy as np
|
2 |
from scipy import signal
|
3 |
import math
|
4 |
-
|
5 |
from huggingface_hub import from_pretrained_keras
|
6 |
import streamlit as st
|
7 |
-
#
|
8 |
-
# from transformers import TFAutoModel
|
9 |
-
# Needed for importing torch to use in the transformers model
|
10 |
-
# import torch
|
11 |
import tensorflow
|
12 |
-
import matplotlib.pyplot as plt
|
13 |
-
# HELLO HUGGING FACE
|
14 |
|
15 |
|
|
|
|
|
|
|
|
|
16 |
def basic_box_array(image_size):
|
17 |
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
18 |
# Creates the outside edges of the box
|
@@ -98,6 +97,8 @@ def add_pixels(array_original, additional_pixels, image_size):
|
|
98 |
return A
|
99 |
|
100 |
|
|
|
|
|
101 |
def basic_box(additional_pixels, density, image_size):
|
102 |
A = basic_box_array(image_size) # Creates the outside edges of the box
|
103 |
# Increase the thickness of each part of the box
|
@@ -269,23 +270,75 @@ thickness_2 = st.selectbox("Thickness 2", thickness_options)
|
|
269 |
interp_length = st.selectbox("Interpolation Length", interpolation_options)
|
270 |
|
271 |
|
|
|
272 |
def generate_unit_cell(shape, density, thickness):
|
273 |
return globals()[shape](int(thickness), float(density), 28)
|
274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
if st.button("Generate Endpoint Images"):
|
276 |
plt.figure(1)
|
277 |
st.header("Endpoints to be generated:")
|
278 |
-
plt.subplot(1, 2, 1), plt.imshow(
|
279 |
-
plt.subplot(1, 2, 2), plt.imshow(
|
280 |
plt.figure(1)
|
281 |
st.pyplot(plt.figure(1))
|
282 |
-
|
283 |
# Load the models from existing huggingface model
|
284 |
# Load the encoder model
|
285 |
encoder_model_boxes = from_pretrained_keras("cmudrc/2d-lattice-encoder")
|
286 |
-
|
287 |
# Load the decoder model
|
288 |
decoder_model_boxes = from_pretrained_keras("cmudrc/2d-lattice-decoder")
|
289 |
-
# decoder_model = TFAutoModel.from_pretrained("cmudrc/2d-lattice-decoder")
|
290 |
|
291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
from scipy import signal
|
3 |
import math
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
from huggingface_hub import from_pretrained_keras
|
6 |
import streamlit as st
|
7 |
+
# Needed in requirements.txt for importing to use in the transformers model
|
|
|
|
|
|
|
8 |
import tensorflow
|
|
|
|
|
9 |
|
10 |
|
11 |
+
# HELLO HUGGING FACE
|
12 |
+
|
13 |
+
########################################################################################################################
|
14 |
+
# Define the piecewise functions to create each of the possible shapes
|
15 |
def basic_box_array(image_size):
|
16 |
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
17 |
# Creates the outside edges of the box
|
|
|
97 |
return A
|
98 |
|
99 |
|
100 |
+
########################################################################################################################
|
101 |
+
# Create the desired shape using the density and thickness
|
102 |
def basic_box(additional_pixels, density, image_size):
|
103 |
A = basic_box_array(image_size) # Creates the outside edges of the box
|
104 |
# Increase the thickness of each part of the box
|
|
|
270 |
interp_length = st.selectbox("Interpolation Length", interpolation_options)
|
271 |
|
272 |
|
273 |
+
# Define the function to generate unit cells based on user inputs
|
274 |
def generate_unit_cell(shape, density, thickness):
|
275 |
return globals()[shape](int(thickness), float(density), 28)
|
276 |
|
277 |
+
|
278 |
+
# Generate the endpoints
|
279 |
+
number_1 = generate_unit_cell(shape_1, density_1, thickness_1)
|
280 |
+
number_2 = generate_unit_cell(shape_2, density_2, thickness_2)
|
281 |
+
|
282 |
+
# Display the endpoints to the user
|
283 |
if st.button("Generate Endpoint Images"):
|
284 |
plt.figure(1)
|
285 |
st.header("Endpoints to be generated:")
|
286 |
+
plt.subplot(1, 2, 1), plt.imshow(number_1, cmap='gray', vmin=0, vmax=1)
|
287 |
+
plt.subplot(1, 2, 2), plt.imshow(number_2, cmap='gray', vmin=0, vmax=1)
|
288 |
plt.figure(1)
|
289 |
st.pyplot(plt.figure(1))
|
290 |
+
########################################################################################################################
|
291 |
# Load the models from existing huggingface model
|
292 |
# Load the encoder model
|
293 |
encoder_model_boxes = from_pretrained_keras("cmudrc/2d-lattice-encoder")
|
294 |
+
|
295 |
# Load the decoder model
|
296 |
decoder_model_boxes = from_pretrained_keras("cmudrc/2d-lattice-decoder")
|
|
|
297 |
|
298 |
|
299 |
+
########################################################################################################################
|
300 |
+
# Encode the Desired Endpoints
|
301 |
+
# resize the array to match the prediction size requirement
|
302 |
+
number_1_expand = np.expand_dims(np.expand_dims(number_1, axis=2), axis=0)
|
303 |
+
number_2_expand = np.expand_dims(np.expand_dims(number_2, axis=2), axis=0)
|
304 |
+
|
305 |
+
# Determine the latent point that will represent our desired number
|
306 |
+
latent_point_1 = encoder_model_boxes.predict(number_1_expand)[0]
|
307 |
+
latent_point_2 = encoder_model_boxes.predict(number_2_expand)[0]
|
308 |
+
|
309 |
+
latent_dimensionality = len(latent_point_1) # define the dimensionality of the latent space
|
310 |
+
########################################################################################################################
|
311 |
+
# Establish the Framework for a LINEAR Interpolation
|
312 |
+
number_internal = 8 # the number of interpolations that the model will find between two points
|
313 |
+
num_interp = number_internal + 2 # the number of images to be pictured
|
314 |
+
latent_matrix = [] # This will contain the latent points of the interpolation
|
315 |
+
for column in range(latent_dimensionality):
|
316 |
+
new_column = np.linspace(latent_point_1[column], latent_point_2[column], num_interp)
|
317 |
+
latent_matrix.append(new_column)
|
318 |
+
latent_matrix = np.array(latent_matrix).T # Transposes the matrix so that each row can be easily indexed
|
319 |
+
########################################################################################################################
|
320 |
+
# Plotting the Interpolation in 2D Using Chosen Points
|
321 |
+
if st.button("Generate Interpolation:"):
|
322 |
+
plt.figure(2)
|
323 |
+
plot_rows = 2
|
324 |
+
plot_columns = num_interp + 2
|
325 |
+
|
326 |
+
# Plot the First Interpolation Point
|
327 |
+
plt.subplot(plot_rows, plot_columns, 1), plt.imshow(number_1, cmap='gray', vmin=0, vmax=1)
|
328 |
+
# plt.title("First Interpolation Point:\n" + str(box_shape_test[number_1]) + "\nPixel Density: " + str(
|
329 |
+
# box_density_test[number_1]) + "\nAdditional Pixels: " + str(additional_pixels_test[number_1]))
|
330 |
+
|
331 |
+
predicted_interps = [] # Used to store the predicted interpolations
|
332 |
+
# Interpolate the Images and Print out to User
|
333 |
+
for latent_point in range(2, num_interp + 2): # cycles the latent points through the decoder model to create images
|
334 |
+
generated_image = decoder_model_boxes.predict(np.array([latent_matrix[latent_point - 2]]))[0] # generates an interpolated image based on the latent point
|
335 |
+
predicted_interps.append(generated_image[:, :, -1])
|
336 |
+
plt.subplot(plot_rows, plot_columns, latent_point), plt.imshow(generated_image[:, :, -1], cmap='gray', vmin=0, vmax=1)
|
337 |
+
# plt.axis('off')
|
338 |
+
|
339 |
+
# Plot the Second Interpolation Point
|
340 |
+
plt.subplot(plot_rows, plot_columns, num_interp + 2), plt.imshow(number_2, cmap='gray', vmin=0, vmax=1)
|
341 |
+
# plt.title("Second Interpolation Point:\n" + str(box_shape_test[number_2]) + "\nPixel Density: " + str(
|
342 |
+
# box_density_test[number_2]) + "\nAdditional Pixels: " + str(additional_pixels_test[number_2])) # + "\nPredicted Latent Point 2: " + str(latent_point_2)
|
343 |
+
plt.figure(2)
|
344 |
+
st.pyplot(plt.figure(2))
|