Spaces:
Sleeping
Sleeping
Commit
·
e0d1700
1
Parent(s):
4661dbe
Added to incorporate a function to export the STL files directly from the user generated inputs
Browse files
app.py
CHANGED
|
@@ -5,6 +5,9 @@ import matplotlib.pyplot as plt
|
|
| 5 |
from huggingface_hub import from_pretrained_keras
|
| 6 |
import streamlit as st
|
| 7 |
from elasticity import elasticity
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Needed in requirements.txt for importing to use in the transformers model
|
| 10 |
import tensorflow
|
|
@@ -344,19 +347,128 @@ for column in range(latent_dimensionality):
|
|
| 344 |
new_column = np.linspace(latent_point_1[column], latent_point_2[column], num_interp)
|
| 345 |
latent_matrix.append(new_column)
|
| 346 |
latent_matrix = np.array(latent_matrix).T # Transposes the matrix so that each row can be easily indexed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
########################################################################################################################
|
| 348 |
# Plotting the Interpolation in 2D Using Chosen Points
|
| 349 |
-
if st.
|
|
|
|
| 350 |
linear_interp_latent = np.linspace(latent_point_1, latent_point_2, num_interp)
|
| 351 |
-
|
| 352 |
linear_predicted_interps = []
|
| 353 |
figure_2 = np.zeros((28, 28 * num_interp))
|
|
|
|
|
|
|
| 354 |
for i in range(num_interp):
|
| 355 |
generated_image = decoder_model_boxes.predict(np.array([linear_interp_latent[i]]))[0]
|
| 356 |
figure_2[0:28, i * 28:(i + 1) * 28, ] = generated_image[:, :, -1]
|
| 357 |
linear_predicted_interps.append(generated_image[:, :, -1])
|
| 358 |
|
| 359 |
st.image(figure_2, width=600)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
########################################################################################################################
|
| 361 |
# Provide User Options
|
| 362 |
st.header("Option 2: Perform a Mesh Interpolation")
|
|
@@ -404,7 +516,7 @@ latent_point_4 = encoder_model_boxes.predict(number_4_expand)[0]
|
|
| 404 |
latent_dimensionality = len(latent_point_1) # define the dimensionality of the latent space
|
| 405 |
########################################################################################################################
|
| 406 |
# Plot a Mesh Gridded Interpolation
|
| 407 |
-
if st.
|
| 408 |
latent_matrix_2 = [] # This will contain the latent points of the interpolation
|
| 409 |
for column in range(latent_dimensionality):
|
| 410 |
new_column = np.linspace(latent_point_3[column], latent_point_4[column], num_interp)
|
|
@@ -429,3 +541,44 @@ if st.button("Generate Mesh Interpolation"):
|
|
| 429 |
mesh_predicted_interps.append(generated_image[:, :, -1])
|
| 430 |
|
| 431 |
st.image(figure_3, width=600)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from huggingface_hub import from_pretrained_keras
|
| 6 |
import streamlit as st
|
| 7 |
from elasticity import elasticity
|
| 8 |
+
import io
|
| 9 |
+
from voxel_to_SDF_to_STL import voxel_to_sdf, sdf_to_stl, single_body_check
|
| 10 |
+
from PIL import Image
|
| 11 |
|
| 12 |
# Needed in requirements.txt for importing to use in the transformers model
|
| 13 |
import tensorflow
|
|
|
|
| 347 |
new_column = np.linspace(latent_point_1[column], latent_point_2[column], num_interp)
|
| 348 |
latent_matrix.append(new_column)
|
| 349 |
latent_matrix = np.array(latent_matrix).T # Transposes the matrix so that each row can be easily indexed
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
########################################################################################################################
|
| 353 |
+
# Create a gif from an interpolation
|
| 354 |
+
def interpolate_gif(decoder, latent_endpoint_1, latent_endpoint_2, n=100):
|
| 355 |
+
# z = np.stack([latent_endpoint_1 + (latent_endpoint_2 - latent_endpoint_1) * t for t in np.linspace(0, 1, n)])
|
| 356 |
+
|
| 357 |
+
# interpolate_list = decoder.predict(z)
|
| 358 |
+
# interpolate_list = (interpolate_list * 255).astype(np.uint8)
|
| 359 |
+
|
| 360 |
+
# images_list = [Image.fromarray(img.reshape(28, 28)).resize((256, 256)) for img in interpolate_list]
|
| 361 |
+
# images_list = images_list + images_list[::-1] # loop back beginning
|
| 362 |
+
predicted_interps = []
|
| 363 |
+
interp_latent = np.linspace(latent_endpoint_1, latent_endpoint_2, n)
|
| 364 |
+
|
| 365 |
+
figure = np.zeros((28, 28 * n))
|
| 366 |
+
for i in range(n):
|
| 367 |
+
generated_image = decoder.predict(np.array([interp_latent[i]]))[0]
|
| 368 |
+
figure[0:28, i * 28:(i + 1) * 28, ] = generated_image[:, :, -1]
|
| 369 |
+
predicted_interps.append(generated_image[:, :, -1])
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
# Regular Save for GIF
|
| 373 |
+
# images_list[0].save(f'{filename}.gif',save_all=True,append_images=images_list[1:],loop=1)
|
| 374 |
+
|
| 375 |
+
images_list = [Image.fromarray(img.reshape(28, 28)).resize((256, 256)) for img in predicted_interps]
|
| 376 |
+
images_list = images_list + images_list[::-1] # loop back beginning
|
| 377 |
+
|
| 378 |
+
# Create a BytesIO object to hold the GIF data
|
| 379 |
+
gif_bytes = io.BytesIO()
|
| 380 |
+
images_list[0].save(
|
| 381 |
+
gif_bytes,
|
| 382 |
+
format='GIF',
|
| 383 |
+
save_all=True,
|
| 384 |
+
append_images=images_list[1:],
|
| 385 |
+
loop=0, duration=100) # Set loop to 0 for infinite looping
|
| 386 |
+
|
| 387 |
+
# Reset the BytesIO object to the beginning
|
| 388 |
+
gif_bytes.seek(0)
|
| 389 |
+
|
| 390 |
+
st.video(gif_bytes)
|
| 391 |
+
# return gif_bytes
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
########################################################################################################################
|
| 395 |
+
# Create an STL file from an interpolation
|
| 396 |
+
def convert_to_2_5d_sdf(interpolation, voxel_threshold, pixel_thickness):
|
| 397 |
+
# Thresholding determines the distance from the SDF that is used, the threshold provided is a divisor
|
| 398 |
+
|
| 399 |
+
# 1. Convert the interpolation into a 3D structure
|
| 400 |
+
interpolation_3d = [interpolation] * pixel_thickness
|
| 401 |
+
|
| 402 |
+
# 2. Convert the voxels into an SDF
|
| 403 |
+
sdf = voxel_to_sdf(interpolation_3d, voxel_threshold)
|
| 404 |
+
return sdf
|
| 405 |
+
|
| 406 |
+
def convert_sdf_to_stl(sdf, threshold_divisor):
|
| 407 |
+
# 3. Check if the SDF is a single body, then convert into an STL
|
| 408 |
+
if single_body_check(sdf, threshold_divisor):
|
| 409 |
+
# Thresholding determines the distance from the SDF that is used, the thresdhold provided is a divisor
|
| 410 |
+
stl = sdf_to_stl(sdf, threshold_divisor)
|
| 411 |
+
return stl
|
| 412 |
+
|
| 413 |
+
|
| 414 |
########################################################################################################################
|
| 415 |
# Plotting the Interpolation in 2D Using Chosen Points
|
| 416 |
+
if st.checkbox("Generate Linear Interpolation"):
|
| 417 |
+
# Generate the set of latent points in the interpolation
|
| 418 |
linear_interp_latent = np.linspace(latent_point_1, latent_point_2, num_interp)
|
|
|
|
| 419 |
linear_predicted_interps = []
|
| 420 |
figure_2 = np.zeros((28, 28 * num_interp))
|
| 421 |
+
|
| 422 |
+
# Predict the image for each latent point
|
| 423 |
for i in range(num_interp):
|
| 424 |
generated_image = decoder_model_boxes.predict(np.array([linear_interp_latent[i]]))[0]
|
| 425 |
figure_2[0:28, i * 28:(i + 1) * 28, ] = generated_image[:, :, -1]
|
| 426 |
linear_predicted_interps.append(generated_image[:, :, -1])
|
| 427 |
|
| 428 |
st.image(figure_2, width=600)
|
| 429 |
+
|
| 430 |
+
# Code to display a gif
|
| 431 |
+
# interpolate_gif(decoder_model_boxes, latent_point_1, latent_point_2)
|
| 432 |
+
|
| 433 |
+
# Code for generating the STL file
|
| 434 |
+
st.subheader("Create an STL file from the extruded image!")
|
| 435 |
+
|
| 436 |
+
if st.checkbox("Select to begin model generation"):
|
| 437 |
+
# Creating an STL file of the linear interpolation
|
| 438 |
+
|
| 439 |
+
pixel_thickness_input = st.number_input("(1) Select a pixel thickness for the 3D model: ", min_value=1, value=28)
|
| 440 |
+
# Set the image threshold for binarization
|
| 441 |
+
voxel_threshold_input = st.slider("(2) Select a value to threshold the image (Recommend <= 0.1) "
|
| 442 |
+
"Higher values will result in less defined shapes: ",
|
| 443 |
+
min_value=0.0001, max_value=0.999, value=0.1, key='voxel_threshold')
|
| 444 |
+
|
| 445 |
+
# Create the SDF File
|
| 446 |
+
linear_sdf = convert_to_2_5d_sdf(figure_2, voxel_threshold_input, pixel_thickness_input)
|
| 447 |
+
|
| 448 |
+
# Set the threshold for the Mesh
|
| 449 |
+
threshold_divisor_input = st.slider("(3) Choose a threshold divisor for the SDF: ", min_value=0.0,
|
| 450 |
+
max_value=5.0,
|
| 451 |
+
value=3.0, key="divisor_threshold")
|
| 452 |
+
|
| 453 |
+
linear_sdf_min = np.min(linear_sdf)
|
| 454 |
+
linear_sdf_max = np.max(linear_sdf)
|
| 455 |
+
st.info("Lower SDF Thresholds will result in smoother, but less accurate shapes. Higher thresholds will result in more "
|
| 456 |
+
"rugged shapes, but they are more accurate. Suggested value for threshold is less than: " +
|
| 457 |
+
str((linear_sdf_max - abs(linear_sdf_min)) / 2))
|
| 458 |
+
|
| 459 |
+
if st.checkbox("Generate STL Model"):
|
| 460 |
+
# Generate the STL File
|
| 461 |
+
linear_stl = convert_sdf_to_stl(linear_sdf, threshold_divisor=threshold_divisor_input)
|
| 462 |
+
|
| 463 |
+
# Download the STL File
|
| 464 |
+
with open(linear_stl, 'rb') as file:
|
| 465 |
+
st.download_button(
|
| 466 |
+
label='Download STL',
|
| 467 |
+
data=file,
|
| 468 |
+
file_name='linear_interpolation.stl',
|
| 469 |
+
key='stl-download'
|
| 470 |
+
)
|
| 471 |
+
|
| 472 |
########################################################################################################################
|
| 473 |
# Provide User Options
|
| 474 |
st.header("Option 2: Perform a Mesh Interpolation")
|
|
|
|
| 516 |
latent_dimensionality = len(latent_point_1) # define the dimensionality of the latent space
|
| 517 |
########################################################################################################################
|
| 518 |
# Plot a Mesh Gridded Interpolation
|
| 519 |
+
if st.checkbox("Generate Mesh Interpolation"):
|
| 520 |
latent_matrix_2 = [] # This will contain the latent points of the interpolation
|
| 521 |
for column in range(latent_dimensionality):
|
| 522 |
new_column = np.linspace(latent_point_3[column], latent_point_4[column], num_interp)
|
|
|
|
| 541 |
mesh_predicted_interps.append(generated_image[:, :, -1])
|
| 542 |
|
| 543 |
st.image(figure_3, width=600)
|
| 544 |
+
|
| 545 |
+
# Code for generating the STL file
|
| 546 |
+
st.subheader("Create an STL file from the extruded image!")
|
| 547 |
+
|
| 548 |
+
if st.checkbox("Select to begin model generation"):
|
| 549 |
+
# Creating an STL file of the linear interpolation
|
| 550 |
+
|
| 551 |
+
mesh_pixel_thickness_input = st.number_input("(1) Select a pixel thickness for the 3D model: ", min_value=1,
|
| 552 |
+
value=28)
|
| 553 |
+
# Set the image threshold for binarization
|
| 554 |
+
mesh_voxel_threshold_input = st.slider("(2) Select a value to threshold the image (Recommend <= 0.1) "
|
| 555 |
+
"Higher values will result in less defined shapes: ",
|
| 556 |
+
min_value=0.0001, max_value=0.999, value=0.1, key='voxel_threshold')
|
| 557 |
+
|
| 558 |
+
# Create the SDF File
|
| 559 |
+
mesh_sdf = convert_to_2_5d_sdf(figure_3, mesh_voxel_threshold_input, mesh_pixel_thickness_input)
|
| 560 |
+
|
| 561 |
+
# Set the threshold for the Mesh
|
| 562 |
+
mesh_threshold_divisor_input = st.slider("(3) Choose a threshold divisor for the SDF: ", min_value=0.0,
|
| 563 |
+
max_value=5.0,
|
| 564 |
+
value=3.0, key="divisor_threshold")
|
| 565 |
+
|
| 566 |
+
mesh_sdf_min = np.min(mesh_sdf)
|
| 567 |
+
mesh_sdf_max = np.max(mesh_sdf)
|
| 568 |
+
st.info(
|
| 569 |
+
"Lower SDF Thresholds will result in smoother, but less accurate shapes. Higher thresholds will result in more "
|
| 570 |
+
"rugged shapes, but they are more accurate. Suggested value for threshold is less than: " +
|
| 571 |
+
str((mesh_sdf_max - abs(mesh_sdf_min)) / 2))
|
| 572 |
+
|
| 573 |
+
if st.checkbox("Generate STL Model"):
|
| 574 |
+
# Generate the STL File
|
| 575 |
+
linear_stl = convert_sdf_to_stl(mesh_sdf, threshold_divisor=mesh_threshold_divisor_input)
|
| 576 |
+
|
| 577 |
+
# Download the STL File
|
| 578 |
+
with open(linear_stl, 'rb') as file:
|
| 579 |
+
st.download_button(
|
| 580 |
+
label='Download STL',
|
| 581 |
+
data=file,
|
| 582 |
+
file_name='interpolation.stl',
|
| 583 |
+
key='stl-download'
|
| 584 |
+
)
|