import numpy as np from scipy import signal import math import matplotlib.pyplot as plt from huggingface_hub import from_pretrained_keras import streamlit as st # Needed in requirements.txt for importing to use in the transformers model import tensorflow # HELLO HUGGING FACE ######################################################################################################################## # Define the piecewise functions to create each of the possible shapes def basic_box_array(image_size): A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values # Creates the outside edges of the box for i in range(image_size): for j in range(image_size): if i == 0 or j == 0 or i == image_size - 1 or j == image_size - 1: A[i][j] = 1 return A def back_slash_array(image_size): A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values for i in range(image_size): for j in range(image_size): if i == j: A[i][j] = 1 return A def forward_slash_array(image_size): A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values for i in range(image_size): for j in range(image_size): if i == (image_size - 1) - j: A[i][j] = 1 return A def hot_dog_array(image_size): # Places pixels down the vertical axis to split the box A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values for i in range(image_size): for j in range(image_size): if j == math.floor((image_size - 1) / 2) or j == math.ceil((image_size - 1) / 2): A[i][j] = 1 return A def hamburger_array(image_size): # Places pixels across the horizontal axis to split the box A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values for i in range(image_size): for j in range(image_size): if i == math.floor((image_size - 1) / 2) or i == math.ceil((image_size - 1) / 2): A[i][j] = 1 return A def center_array(image_size): A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values for i in range(image_size): for j in range(image_size): if i == math.floor((image_size - 1) / 2) and j == math.ceil((image_size - 1) / 2): A[i][j] = 1 if i == math.floor((image_size - 1) / 2) and j == math.floor((image_size - 1) / 2): A[i][j] = 1 if j == math.ceil((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2): A[i][j] = 1 if j == math.floor((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2): A[i][j] = 1 return A def update_array(array_original, array_new, image_size): A = array_original for i in range(image_size): for j in range(image_size): if array_new[i][j] == 1: A[i][j] = 1 return A def add_pixels(array_original, additional_pixels, image_size): # Adds pixels to the thickness of each component of the box A = array_original A_updated = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values for dens in range(additional_pixels): for i in range(1, image_size - 1): for j in range(1, image_size - 1): if A[i - 1][j] + A[i + 1][j] + A[i][j - 1] + A[i][j + 1] > 0: A_updated[i][j] = 1 A = update_array(A, A_updated, image_size) return A ######################################################################################################################## # Create the desired shape using the density and thickness def basic_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Creates the outside edges of the box # Increase the thickness of each part of the box A = add_pixels(A, additional_pixels, image_size) return A * density def horizontal_vertical_box_split(additional_pixels, density, image_size): A = basic_box_array(image_size) # Creates the outside edges of the box # Place pixels across the horizontal and vertical axes to split the box A = update_array(A, hot_dog_array(image_size), image_size) A = update_array(A, hamburger_array(image_size), image_size) # Increase the thickness of each part of the box A = add_pixels(A, additional_pixels, image_size) return A * density def diagonal_box_split(additional_pixels, density, image_size): A = basic_box_array(image_size) # Creates the outside edges of the box # Add pixels along the diagonals of the box A = update_array(A, back_slash_array(image_size), image_size) A = update_array(A, forward_slash_array(image_size), image_size) # Adds pixels to the thickness of each component of the box # Increase the thickness of each part of the box A = add_pixels(A, additional_pixels, image_size) return A * density def back_slash_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values A = update_array(A, back_slash_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density def forward_slash_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values A = update_array(A, forward_slash_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density def hot_dog_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values A = update_array(A, hot_dog_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density def hamburger_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values A = update_array(A, hamburger_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density def x_plus_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values A = update_array(A, hot_dog_array(image_size), image_size) A = update_array(A, hamburger_array(image_size), image_size) A = update_array(A, forward_slash_array(image_size), image_size) A = update_array(A, back_slash_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density def forward_slash_plus_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values A = update_array(A, hot_dog_array(image_size), image_size) A = update_array(A, hamburger_array(image_size), image_size) A = update_array(A, forward_slash_array(image_size), image_size) # A = update_array(A, back_slash_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density def back_slash_plus_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values A = update_array(A, hot_dog_array(image_size), image_size) A = update_array(A, hamburger_array(image_size), image_size) # A = update_array(A, forward_slash_array(image_size), image_size) A = update_array(A, back_slash_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density def x_hot_dog_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values A = update_array(A, hot_dog_array(image_size), image_size) # A = update_array(A, hamburger_array(image_size), image_size) A = update_array(A, forward_slash_array(image_size), image_size) A = update_array(A, back_slash_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density def x_hamburger_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values # A = update_array(A, hot_dog_array(image_size), image_size) A = update_array(A, hamburger_array(image_size), image_size) A = update_array(A, forward_slash_array(image_size), image_size) A = update_array(A, back_slash_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density def center_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values A = update_array(A, center_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density ######################################################################################################################## # The function to add thickness to struts in an array def add_thickness(array_original, thickness: int) -> np.ndarray: """ :param array_original: [ndarray] - an array with thickness 1 of any shape type :param thickness: [int] - the number of pixels to be activated surrounding the base shape :return: [ndarray] - the output is a unit cell that has been convolved to expand the number of pixels activated based on the desired thickness. The activated pixels are 1 (white) and the deactivated pixels are 0 (black) """ A = array_original if thickness == 0: # want an array of all 0's for thickness = 0 A[A > 0] = 0 else: filter_size = 2*thickness - 1 # the size of the filter needs to extend far enough to reach the base shape filter = np.zeros((filter_size, filter_size)) filter[np.floor((filter_size - 1) / 2).astype(int), :] = filter[:, np.floor((filter_size - 1) / 2).astype(int)] =1 filter[np.ceil((filter_size - 1) / 2).astype(int), :] = filter[:, np.ceil((filter_size - 1) / 2).astype(int)] = 1 # The filter is made into a '+' shape using these functions convolution = signal.convolve2d(A, filter, mode='same') A = np.where(convolution <= 1, convolution, 1) return A # The function to efficiently combine arrays in a list def combine_arrays(arrays): output_array = np.sum(arrays, axis=0) # Add the list of arrays output_array = np.array(output_array > 0, dtype=int) # Convert all values in array to 1 return output_array ######################################################################################################################## # Provide the Options for users to select from shape_options = ("basic_box", "diagonal_box_split", "horizontal_vertical_box_split", "back_slash_box", "forward_slash_box", "back_slash_plus_box", "forward_slash_plus_box", "hot_dog_box", "hamburger_box", "x_hamburger_box", "x_hot_dog_box", "x_plus_box") density_options = ["{:.2f}".format(x) for x in np.linspace(0.1, 1, 10)] thickness_options = [str(int(x)) for x in np.linspace(0, 10, 11)] interpolation_options = [str(int(x)) for x in [3, 5, 10, 20]] # Provide User Options # Select Shapes shape_1 = st.selectbox("Shape 1", shape_options) shape_2 = st.selectbox("Shape 2", shape_options) # Select Density density_1 = st.selectbox("Density 1:", density_options) density_2 = st.selectbox("Density 2:", density_options) # Select Thickness thickness_1 = st.selectbox("Thickness 1", thickness_options) thickness_2 = st.selectbox("Thickness 2", thickness_options) # Select Interpolation Length interp_length = st.selectbox("Interpolation Length", interpolation_options) # Define the function to generate unit cells based on user inputs def generate_unit_cell(shape, density, thickness): return globals()[shape](int(thickness), float(density), 28) # Generate the endpoints number_1 = generate_unit_cell(shape_1, density_1, thickness_1) number_2 = generate_unit_cell(shape_2, density_2, thickness_2) # Display the endpoints to the user if st.button("Generate Endpoint Images"): plt.figure(1) st.header("Endpoints to be generated:") plt.subplot(1, 2, 1), plt.imshow(number_1, cmap='gray', vmin=0, vmax=1) plt.subplot(1, 2, 2), plt.imshow(number_2, cmap='gray', vmin=0, vmax=1) plt.figure(1) st.pyplot(plt.figure(1)) ######################################################################################################################## # Load the models from existing huggingface model # Load the encoder model encoder_model_boxes = from_pretrained_keras("cmudrc/2d-lattice-encoder") # Load the decoder model decoder_model_boxes = from_pretrained_keras("cmudrc/2d-lattice-decoder") ######################################################################################################################## # Encode the Desired Endpoints # resize the array to match the prediction size requirement number_1_expand = np.expand_dims(np.expand_dims(number_1, axis=2), axis=0) number_2_expand = np.expand_dims(np.expand_dims(number_2, axis=2), axis=0) # Determine the latent point that will represent our desired number latent_point_1 = encoder_model_boxes.predict(number_1_expand)[0] latent_point_2 = encoder_model_boxes.predict(number_2_expand)[0] latent_dimensionality = len(latent_point_1) # define the dimensionality of the latent space ######################################################################################################################## # Establish the Framework for a LINEAR Interpolation number_internal = int(interp_length) # the number of interpolations that the model will find between two points num_interp = number_internal + 2 # the number of images to be pictured latent_matrix = [] # This will contain the latent points of the interpolation for column in range(latent_dimensionality): new_column = np.linspace(latent_point_1[column], latent_point_2[column], num_interp) latent_matrix.append(new_column) latent_matrix = np.array(latent_matrix).T # Transposes the matrix so that each row can be easily indexed ######################################################################################################################## # Plotting the Interpolation in 2D Using Chosen Points if st.button("Generate Interpolation"): plt.figure(2) linear_interp_latent = np.linspace(latent_point_1, latent_point_2, num_interp) print(len(linear_interp_latent)) linear_predicted_interps = [] figure = np.zeros((28 * num_interp, 28)) for i in range(num_interp): generated_image = decoder_model_boxes.predict(np.array([linear_interp_latent[i]]))[0] figure[i * 28:(i + 1) * 28, 0:28, ] = generated_image[:, :, -1] linear_predicted_interps.append(generated_image[:, :, -1]) plt.figure(figsize=(15, 15)) # plt.imshow(figure, cmap='gray') plt.figure(2) st.pyplot(plt.figure(2)) """ plot_rows = 2 plot_columns = num_interp + 2 # Plot the First Interpolation Point plt.subplot(plot_rows, plot_columns, 1), plt.imshow(number_1, cmap='gray', vmin=0, vmax=1) # plt.title("First Interpolation Point:\n" + str(box_shape_test[number_1]) + "\nPixel Density: " + str( # box_density_test[number_1]) + "\nAdditional Pixels: " + str(additional_pixels_test[number_1])) predicted_interps = [] # Used to store the predicted interpolations # Interpolate the Images and Print out to User for latent_point in range(2, num_interp + 2): # cycles the latent points through the decoder model to create images generated_image = decoder_model_boxes.predict(np.array([latent_matrix[latent_point - 2]]))[0] # generates an interpolated image based on the latent point predicted_interps.append(generated_image[:, :, -1]) plt.subplot(plot_rows, plot_columns, latent_point), plt.imshow(generated_image[:, :, -1], cmap='gray', vmin=0, vmax=1) # plt.axis('off') # Plot the Second Interpolation Point plt.subplot(plot_rows, plot_columns, num_interp + 2), plt.imshow(number_2, cmap='gray', vmin=0, vmax=1) # plt.title("Second Interpolation Point:\n" + str(box_shape_test[number_2]) + "\nPixel Density: " + str( # box_density_test[number_2]) + "\nAdditional Pixels: " + str(additional_pixels_test[number_2])) # + "\nPredicted Latent Point 2: " + str(latent_point_2) """ ''' latent_matrix_2 = [] # This will contain the latent points of the interpolation for column in range(latent_dimensionality): new_column = np.linspace(latent_point_3[column], latent_point_4[column], num_interp) latent_matrix_2.append(new_column) latent_matrix_2 = np.array(latent_matrix_2).T # Transposes the matrix so that each row can be easily indexed mesh = [] # This will create a mesh by interpolating between the two interpolations for column in range(num_interp): row = np.linspace(latent_matrix[column], latent_matrix_2[column], num_interp) mesh.append(row) mesh = np.transpose(mesh, axes=(1, 0, 2)) # Transpose the array so it matches the original interpolation generator_model = decoder_model_boxes figure = np.zeros((28 * num_interp, 28 * num_interp)) mesh_predicted_interps = [] for i in range(num_interp): for j in range(num_interp): generated_image = generator_model.predict(np.array([mesh[i][j]]))[0] figure[i * 28:(i + 1) * 28, j * 28:(j + 1) * 28, ] = generated_image[:, :, -1] mesh_predicted_interps.append(generated_image[:, :, -1]) plt.figure(figsize=(15, 15)) plt.imshow(figure, cmap='gray') '''