import numpy as np from scipy import signal import math import matplotlib.pyplot as plt from huggingface_hub import from_pretrained_keras import streamlit as st from elasticity import elasticity import io from voxel_to_SDF_to_STL import voxel_to_sdf, sdf_to_stl, single_body_check from PIL import Image import time # Needed in requirements.txt for importing to use in the transformers model import tensorflow # HELLO HUGGING FACE ######################################################################################################################## # Define the piecewise functions to create each of the possible shapes def basic_box_array(image_size): A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values # Creates the outside edges of the box for i in range(image_size): for j in range(image_size): if i == 0 or j == 0 or i == image_size - 1 or j == image_size - 1: A[i][j] = 1 return A def back_slash_array(image_size): A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values for i in range(image_size): for j in range(image_size): if i == j: A[i][j] = 1 return A def forward_slash_array(image_size): A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values for i in range(image_size): for j in range(image_size): if i == (image_size - 1) - j: A[i][j] = 1 return A def hot_dog_array(image_size): # Places pixels down the vertical axis to split the box A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values for i in range(image_size): for j in range(image_size): if j == math.floor((image_size - 1) / 2) or j == math.ceil((image_size - 1) / 2): A[i][j] = 1 return A def hamburger_array(image_size): # Places pixels across the horizontal axis to split the box A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values for i in range(image_size): for j in range(image_size): if i == math.floor((image_size - 1) / 2) or i == math.ceil((image_size - 1) / 2): A[i][j] = 1 return A def center_array(image_size): A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values for i in range(image_size): for j in range(image_size): if i == math.floor((image_size - 1) / 2) and j == math.ceil((image_size - 1) / 2): A[i][j] = 1 if i == math.floor((image_size - 1) / 2) and j == math.floor((image_size - 1) / 2): A[i][j] = 1 if j == math.ceil((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2): A[i][j] = 1 if j == math.floor((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2): A[i][j] = 1 return A def update_array(array_original, array_new, image_size): A = array_original for i in range(image_size): for j in range(image_size): if array_new[i][j] == 1: A[i][j] = 1 return A def add_pixels(array_original, additional_pixels, image_size): # Adds pixels to the thickness of each component of the box A = array_original A_updated = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values for dens in range(additional_pixels): for i in range(1, image_size - 1): for j in range(1, image_size - 1): if A[i - 1][j] + A[i + 1][j] + A[i][j - 1] + A[i][j + 1] > 0: A_updated[i][j] = 1 A = update_array(A, A_updated, image_size) return A ######################################################################################################################## # Create the desired shape using the density and thickness def basic_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Creates the outside edges of the box # Increase the thickness of each part of the box A = add_pixels(A, additional_pixels, image_size) return A * density def horizontal_vertical_box_split(additional_pixels, density, image_size): A = basic_box_array(image_size) # Creates the outside edges of the box # Place pixels across the horizontal and vertical axes to split the box A = update_array(A, hot_dog_array(image_size), image_size) A = update_array(A, hamburger_array(image_size), image_size) # Increase the thickness of each part of the box A = add_pixels(A, additional_pixels, image_size) return A * density def diagonal_box_split(additional_pixels, density, image_size): A = basic_box_array(image_size) # Creates the outside edges of the box # Add pixels along the diagonals of the box A = update_array(A, back_slash_array(image_size), image_size) A = update_array(A, forward_slash_array(image_size), image_size) # Adds pixels to the thickness of each component of the box # Increase the thickness of each part of the box A = add_pixels(A, additional_pixels, image_size) return A * density def back_slash_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values A = update_array(A, back_slash_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density def forward_slash_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values A = update_array(A, forward_slash_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density def hot_dog_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values A = update_array(A, hot_dog_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density def hamburger_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values A = update_array(A, hamburger_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density def x_plus_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values A = update_array(A, hot_dog_array(image_size), image_size) A = update_array(A, hamburger_array(image_size), image_size) A = update_array(A, forward_slash_array(image_size), image_size) A = update_array(A, back_slash_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density def forward_slash_plus_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values A = update_array(A, hot_dog_array(image_size), image_size) A = update_array(A, hamburger_array(image_size), image_size) A = update_array(A, forward_slash_array(image_size), image_size) # A = update_array(A, back_slash_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density def back_slash_plus_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values A = update_array(A, hot_dog_array(image_size), image_size) A = update_array(A, hamburger_array(image_size), image_size) # A = update_array(A, forward_slash_array(image_size), image_size) A = update_array(A, back_slash_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density def x_hot_dog_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values A = update_array(A, hot_dog_array(image_size), image_size) # A = update_array(A, hamburger_array(image_size), image_size) A = update_array(A, forward_slash_array(image_size), image_size) A = update_array(A, back_slash_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density def x_hamburger_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values # A = update_array(A, hot_dog_array(image_size), image_size) A = update_array(A, hamburger_array(image_size), image_size) A = update_array(A, forward_slash_array(image_size), image_size) A = update_array(A, back_slash_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density def center_box(additional_pixels, density, image_size): A = basic_box_array(image_size) # Initializes A matrix with 0 values A = update_array(A, center_array(image_size), image_size) A = add_pixels(A, additional_pixels, image_size) return A * density ######################################################################################################################## # The function to add thickness to struts in an array def add_thickness(array_original, thickness: int) -> np.ndarray: """ :param array_original: [ndarray] - an array with thickness 1 of any shape type :param thickness: [int] - the number of pixels to be activated surrounding the base shape :return: [ndarray] - the output is a unit cell that has been convolved to expand the number of pixels activated based on the desired thickness. The activated pixels are 1 (white) and the deactivated pixels are 0 (black) """ A = array_original if thickness == 0: # want an array of all 0's for thickness = 0 A[A > 0] = 0 else: filter_size = 2*thickness - 1 # the size of the filter needs to extend far enough to reach the base shape filter = np.zeros((filter_size, filter_size)) filter[np.floor((filter_size - 1) / 2).astype(int), :] = filter[:, np.floor((filter_size - 1) / 2).astype(int)] =1 filter[np.ceil((filter_size - 1) / 2).astype(int), :] = filter[:, np.ceil((filter_size - 1) / 2).astype(int)] = 1 # The filter is made into a '+' shape using these functions convolution = signal.convolve2d(A, filter, mode='same') A = np.where(convolution <= 1, convolution, 1) return A # The function to efficiently combine arrays in a list def combine_arrays(arrays): output_array = np.sum(arrays, axis=0) # Add the list of arrays output_array = np.array(output_array > 0, dtype=int) # Convert all values in array to 1 return output_array ######################################################################################################################## # Explain the App st.header("Multi-Lattice Generator Through a VAE Model") st.write("Shape: the type of shape the lattice will have") st.write("Density: the pixel intensity of each activated pixel") st.write("Thickness: the additional pixels added to the base shape") st.write("Interpolation Length: the number of internal interpolation points that will exist in the interpolation") ######################################################################################################################## # Provide the Options for users to select from shape_options = ("basic_box", "diagonal_box_split", "horizontal_vertical_box_split", "back_slash_box", "forward_slash_box", "back_slash_plus_box", "forward_slash_plus_box", "hot_dog_box", "hamburger_box", "x_hamburger_box", "x_hot_dog_box", "x_plus_box") density_options = ["{:.2f}".format(x) for x in np.linspace(0.1, 1, 10)] thickness_options = [str(int(x)) for x in np.linspace(0, 10, 11)] interpolation_options = [str(int(x)) for x in np.linspace(2, 20, 19)] # Provide User Options st.header("Option 1: Perform a Linear Interpolation") # Select Shapes shape_1 = st.selectbox("Shape 1", shape_options) shape_2 = st.selectbox("Shape 2", shape_options) # Select Density density_1 = st.selectbox("Density 1:", density_options, index=len(density_options)-1) density_2 = st.selectbox("Density 2:", density_options, index=len(density_options)-1) # Select Thickness thickness_1 = st.selectbox("Thickness 1", thickness_options) thickness_2 = st.selectbox("Thickness 2", thickness_options) # Select Interpolation Length interp_length = st.selectbox("Interpolation Length", interpolation_options, index=2) # Define the function to generate unit cells based on user inputs def generate_unit_cell(shape, density, thickness): return globals()[shape](int(thickness), float(density), 28) def display_arrays(array1, array2, label_1, label_2): # A Function to plot two arrays side by side in streamlit # Create two columns col1, col2 = st.columns(2) # Populate the first column with array1 col1.header(label_1) col1.write(array1) # Populate the second column with array2 col2.header(label_2) col2.write(array2) # Generate the endpoints number_1 = generate_unit_cell(shape_1, density_1, thickness_1) number_2 = generate_unit_cell(shape_2, density_2, thickness_2) # Calculate the elasticity for the shapes: elasticity_1 = elasticity(number_1) elasticity_2 = elasticity(number_2) # Display the endpoints to the user if st.button("Generate Endpoint Images and Elasticity Tensors"): plt.figure(1) st.header("Endpoints to be generated:") plt.subplot(1, 2, 1), plt.imshow(number_1, cmap='gray', vmin=0, vmax=1), plt.title("Shape 1:") display_arrays(elasticity_1, elasticity_2, "Elasticity Tensor of Shape 1", "Elasticity Tensor of Shape 2") plt.subplot(1, 2, 2), plt.imshow(number_2, cmap='gray', vmin=0, vmax=1), plt.title("Shape 2:") plt.figure(1) st.pyplot(plt.figure(1)) ######################################################################################################################## # Load the models from existing huggingface model # Load the encoder model encoder_model_boxes = from_pretrained_keras("cmudrc/2d-lattice-encoder") # Load the decoder model decoder_model_boxes = from_pretrained_keras("cmudrc/2d-lattice-decoder") ######################################################################################################################## # Encode the Desired Endpoints # resize the array to match the prediction size requirement number_1_expand = np.expand_dims(np.expand_dims(number_1, axis=2), axis=0) number_2_expand = np.expand_dims(np.expand_dims(number_2, axis=2), axis=0) # Determine the latent point that will represent our desired number latent_point_1 = encoder_model_boxes.predict(number_1_expand)[0] latent_point_2 = encoder_model_boxes.predict(number_2_expand)[0] latent_dimensionality = len(latent_point_1) # define the dimensionality of the latent space ######################################################################################################################## # Establish the Framework for a LINEAR Interpolation num_interp = int(interp_length) # the number of images to be pictured latent_matrix = [] # This will contain the latent points of the interpolation for column in range(latent_dimensionality): new_column = np.linspace(latent_point_1[column], latent_point_2[column], num_interp) latent_matrix.append(new_column) latent_matrix = np.array(latent_matrix).T # Transposes the matrix so that each row can be easily indexed ######################################################################################################################## # Create a gif from an interpolation def interpolate_gif(decoder, latent_endpoint_1, latent_endpoint_2, n=100): # z = np.stack([latent_endpoint_1 + (latent_endpoint_2 - latent_endpoint_1) * t for t in np.linspace(0, 1, n)]) # interpolate_list = decoder.predict(z) # interpolate_list = (interpolate_list * 255).astype(np.uint8) # images_list = [Image.fromarray(img.reshape(28, 28)).resize((256, 256)) for img in interpolate_list] # images_list = images_list + images_list[::-1] # loop back beginning predicted_interps = [] interp_latent = np.linspace(latent_endpoint_1, latent_endpoint_2, n) figure = np.zeros((28, 28 * n)) for i in range(n): generated_image = decoder.predict(np.array([interp_latent[i]]))[0] figure[0:28, i * 28:(i + 1) * 28, ] = generated_image[:, :, -1] predicted_interps.append(generated_image[:, :, -1]) # Regular Save for GIF # images_list[0].save(f'{filename}.gif',save_all=True,append_images=images_list[1:],loop=1) images_list = [Image.fromarray(img.reshape(28, 28)).resize((256, 256)) for img in predicted_interps] images_list = images_list + images_list[::-1] # loop back beginning # Create a BytesIO object to hold the GIF data gif_bytes = io.BytesIO() images_list[0].save( gif_bytes, format='GIF', save_all=True, append_images=images_list[1:], loop=0, duration=100) # Set loop to 0 for infinite looping # Reset the BytesIO object to the beginning gif_bytes.seek(0) st.video(gif_bytes) # return gif_bytes ######################################################################################################################## # Create an STL file from an interpolation def convert_to_2_5d_sdf(interpolation, voxel_threshold, pixel_thickness): # Thresholding determines the distance from the SDF that is used, the threshold provided is a divisor # 1. Convert the interpolation into a 3D structure interpolation_3d = [interpolation] * pixel_thickness # 2. Convert the voxels into an SDF sdf = voxel_to_sdf(interpolation_3d, voxel_threshold) return sdf def convert_sdf_to_stl(sdf, threshold_divisor): # 3. Check if the SDF is a single body, then convert into an STL if single_body_check(sdf, threshold_divisor): # Thresholding determines the distance from the SDF that is used, the thresdhold provided is a divisor stl = sdf_to_stl(sdf, threshold_divisor) return stl ######################################################################################################################## # Plotting the Interpolation in 2D Using Chosen Points if st.checkbox("Generate Linear Interpolation"): # Generate the set of latent points in the interpolation linear_interp_latent = np.linspace(latent_point_1, latent_point_2, num_interp) linear_predicted_interps = [] figure_2 = np.zeros((28, 28 * num_interp)) # Predict the image for each latent point for i in range(num_interp): generated_image = decoder_model_boxes.predict(np.array([linear_interp_latent[i]]))[0] figure_2[0:28, i * 28:(i + 1) * 28, ] = generated_image[:, :, -1] linear_predicted_interps.append(generated_image[:, :, -1]) st.image(figure_2, width=600) # Code to display a gif # interpolate_gif(decoder_model_boxes, latent_point_1, latent_point_2) # Code for generating the STL file st.subheader("Create an STL file from the extruded image!") if st.checkbox("Select to begin model generation"): # Creating an STL file of the linear interpolation pixel_thickness_input = st.number_input("(1) Select a pixel thickness for the 3D model: ", min_value=1, value=28) # Set the image threshold for binarization voxel_threshold_input = st.slider("(2) Select a value to threshold the image (Recommend <= 0.1) " "Higher values will result in less defined shapes: ", min_value=0.0001, max_value=0.999, value=0.1, key='voxel_threshold') # Create the SDF File linear_sdf = convert_to_2_5d_sdf(figure_2, voxel_threshold_input, pixel_thickness_input) # Set the threshold for the Mesh threshold_divisor_input = st.slider("(3) Choose a threshold divisor for the SDF: ", min_value=0.0, max_value=5.0, value=3.0, key="divisor_threshold") linear_sdf_min = np.min(linear_sdf) linear_sdf_max = np.max(linear_sdf) st.info("Lower SDF Thresholds will result in smoother, but less accurate shapes. Higher thresholds will result in more " "rugged shapes, but they are more accurate. Suggested value for threshold is less than: " + str((linear_sdf_max - abs(linear_sdf_min)) / 2)) if st.button("Generate STL Model"): # Generate the STL File linear_stl = convert_sdf_to_stl(linear_sdf, threshold_divisor=threshold_divisor_input) # Download the STL File with open(linear_stl, 'rb') as file: st.download_button( label='Download STL', data=file, file_name='linear_interpolation.stl', key='stl-download' ) ######################################################################################################################## # Provide User Options st.header("Option 2: Perform a Mesh Interpolation") st.write("The four corners of this mesh are defined using the shapes in both Option 1 and Option 2") # Select Shapes shape_3 = st.selectbox("Shape 3", shape_options) shape_4 = st.selectbox("Shape 4", shape_options) # Select Density density_3 = st.selectbox("Density 3:", density_options, index=len(density_options)-1) density_4 = st.selectbox("Density 4:", density_options, index=len(density_options)-1) # Select Thickness thickness_3 = st.selectbox("Thickness 3", thickness_options) thickness_4 = st.selectbox("Thickness 4", thickness_options) # Generate the endpoints number_3 = generate_unit_cell(shape_3, density_3, thickness_3) number_4 = generate_unit_cell(shape_4, density_4, thickness_4) # Display the endpoints to the user if st.button("Generate Endpoint Images for Mesh and Elasticity Tensors"): plt.figure(1) st.header("Endpoints to be generated:") elasticity_3 = elasticity(number_3) elasticity_4 = elasticity(number_4) display_arrays(elasticity_1, elasticity_2, "Elasticity Tensor of Shape 1", "Elasticity Tensor of Shape 2") display_arrays(elasticity_3, elasticity_4, "Elasticity Tensor of Shape 3", "Elasticity Tensor of Shape 4") plt.subplot(2, 2, 1), plt.imshow(number_1, cmap='gray', vmin=0, vmax=1) plt.subplot(2, 2, 2), plt.imshow(number_2, cmap='gray', vmin=0, vmax=1) plt.subplot(2, 2, 3), plt.imshow(number_3, cmap='gray', vmin=0, vmax=1) plt.subplot(2, 2, 4), plt.imshow(number_4, cmap='gray', vmin=0, vmax=1) plt.figure(1) st.pyplot(plt.figure(1)) ######################################################################################################################## # Encode the Desired Endpoints # resize the array to match the prediction size requirement number_3_expand = np.expand_dims(np.expand_dims(number_3, axis=2), axis=0) number_4_expand = np.expand_dims(np.expand_dims(number_4, axis=2), axis=0) # Determine the latent point that will represent our desired number latent_point_3 = encoder_model_boxes.predict(number_3_expand)[0] latent_point_4 = encoder_model_boxes.predict(number_4_expand)[0] latent_dimensionality = len(latent_point_1) # define the dimensionality of the latent space ######################################################################################################################## # Plot a Mesh Gridded Interpolation if st.checkbox("Generate Mesh Interpolation"): latent_matrix_2 = [] # This will contain the latent points of the interpolation for column in range(latent_dimensionality): new_column = np.linspace(latent_point_3[column], latent_point_4[column], num_interp) latent_matrix_2.append(new_column) latent_matrix_2 = np.array(latent_matrix_2).T # Transposes the matrix so that each row can be easily indexed mesh = [] # This will create a mesh by interpolating between the two interpolations for column in range(num_interp): row = np.linspace(latent_matrix[column], latent_matrix_2[column], num_interp) mesh.append(row) mesh = np.transpose(mesh, axes=(1, 0, 2)) # Transpose the array so it matches the original interpolation generator_model = decoder_model_boxes figure_3 = np.zeros((28 * num_interp, 28 * num_interp)) mesh_predicted_interps = [] for i in range(num_interp): for j in range(num_interp): generated_image = generator_model.predict(np.array([mesh[i][j]]))[0] figure_3[i * 28:(i + 1) * 28, j * 28:(j + 1) * 28, ] = generated_image[:, :, -1] mesh_predicted_interps.append(generated_image[:, :, -1]) st.image(figure_3, width=600) # Code for generating the STL file st.subheader("Create an STL file from the extruded image!") if st.checkbox("Select to begin model generation"): # Creating an STL file of the linear interpolation mesh_pixel_thickness_input = st.number_input("(1) Select a pixel thickness for the 3D model: ", min_value=1, value=28) # Set the image threshold for binarization mesh_voxel_threshold_input = st.slider("(2) Select a value to threshold the image (Recommend <= 0.1) " "Higher values will result in less defined shapes: ", min_value=0.0001, max_value=0.999, value=0.1, key='voxel_threshold') # Create the SDF File mesh_sdf = convert_to_2_5d_sdf(figure_3, mesh_voxel_threshold_input, mesh_pixel_thickness_input) # Set the threshold for the Mesh mesh_threshold_divisor_input = st.slider("(3) Choose a threshold divisor for the SDF: ", min_value=0.0, max_value=5.0, value=3.0, key="divisor_threshold") mesh_sdf_min = np.min(mesh_sdf) mesh_sdf_max = np.max(mesh_sdf) st.info( "Lower SDF Thresholds will result in smoother, but less accurate shapes. Higher thresholds will result in more " "rugged shapes, but they are more accurate. Suggested value for threshold is less than: " + str((mesh_sdf_max - abs(mesh_sdf_min)) / 2)) if st.button("Generate STL Model"): # Generate the STL File linear_stl = convert_sdf_to_stl(mesh_sdf, threshold_divisor=mesh_threshold_divisor_input) # Download the STL File with open(linear_stl, 'rb') as file: st.download_button( label='Download STL', data=file, file_name='interpolation.stl', key='stl-download' )