Spaces:
Running
Running
Better initial values
Browse files
app.py
CHANGED
@@ -249,6 +249,10 @@ thickness_options = [str(int(x)) for x in numpy.linspace(0, 10, 11)]
|
|
249 |
interpolation_options = [str(int(x)) for x in [3, 5, 10, 20]]
|
250 |
|
251 |
|
|
|
|
|
|
|
|
|
252 |
def interpolate(t1, t2, d1, d2, th1, th2, steps):
|
253 |
# Load the decoder model
|
254 |
decoder_model_boxes = tensorflow.keras.models.load_model('data/decoder_model_boxes', compile=False)
|
@@ -264,8 +268,8 @@ def interpolate(t1, t2, d1, d2, th1, th2, steps):
|
|
264 |
encoder_model_boxes.load_weights('data/model_tf')
|
265 |
|
266 |
num_internal = int(steps)
|
267 |
-
number_1 =
|
268 |
-
number_2 =
|
269 |
|
270 |
# resize the array to match the prediction size requirement
|
271 |
number_1_expand = numpy.expand_dims(numpy.expand_dims(number_1, axis=2), axis=0)
|
@@ -302,22 +306,18 @@ def interpolate(t1, t2, d1, d2, th1, th2, steps):
|
|
302 |
return transition_region
|
303 |
|
304 |
|
305 |
-
def generate_unit_cell(t, d, th):
|
306 |
-
return globals()[t](int(th), float(d), 28)
|
307 |
-
|
308 |
-
|
309 |
with gradio.Blocks() as demo:
|
310 |
with gradio.Row():
|
311 |
with gradio.Column(min_width=250):
|
312 |
-
t1 = gradio.Dropdown(endpoint_options, label="Type 1", value=
|
313 |
-
d1 = gradio.Dropdown(density_options, label="Density 1", value=
|
314 |
-
th1 = gradio.Dropdown(thickness_options, label="Thickness 1", value=
|
315 |
with gradio.Column(min_width=250):
|
316 |
-
img1 = gradio.Image(label="Endpoint 1")
|
317 |
with gradio.Column(min_width=250):
|
318 |
-
t2 = gradio.Dropdown(endpoint_options, label="Type 2", value=
|
319 |
-
d2 = gradio.Dropdown(density_options, label="Density 2", value=
|
320 |
-
th2 = gradio.Dropdown(thickness_options, label="Thickness 2", value=
|
321 |
with gradio.Column(min_width=250):
|
322 |
img2 = gradio.Image(label="Endpoint 2")
|
323 |
|
|
|
249 |
interpolation_options = [str(int(x)) for x in [3, 5, 10, 20]]
|
250 |
|
251 |
|
252 |
+
def generate_unit_cell(t, d, th):
|
253 |
+
return globals()[t](int(th), float(d), 28)
|
254 |
+
|
255 |
+
|
256 |
def interpolate(t1, t2, d1, d2, th1, th2, steps):
|
257 |
# Load the decoder model
|
258 |
decoder_model_boxes = tensorflow.keras.models.load_model('data/decoder_model_boxes', compile=False)
|
|
|
268 |
encoder_model_boxes.load_weights('data/model_tf')
|
269 |
|
270 |
num_internal = int(steps)
|
271 |
+
number_1 = generate_unit_cell(t1, d1, th1)
|
272 |
+
number_2 = generate_unit_cell(t2, d2, th2)
|
273 |
|
274 |
# resize the array to match the prediction size requirement
|
275 |
number_1_expand = numpy.expand_dims(numpy.expand_dims(number_1, axis=2), axis=0)
|
|
|
306 |
return transition_region
|
307 |
|
308 |
|
|
|
|
|
|
|
|
|
309 |
with gradio.Blocks() as demo:
|
310 |
with gradio.Row():
|
311 |
with gradio.Column(min_width=250):
|
312 |
+
t1 = gradio.Dropdown(endpoint_options, label="Type 1", value="hamburger_box")
|
313 |
+
d1 = gradio.Dropdown(density_options, label="Density 1", value="1.00")
|
314 |
+
th1 = gradio.Dropdown(thickness_options, label="Thickness 1", value="2")
|
315 |
with gradio.Column(min_width=250):
|
316 |
+
img1 = gradio.Image(label="Endpoint 1", value=)
|
317 |
with gradio.Column(min_width=250):
|
318 |
+
t2 = gradio.Dropdown(endpoint_options, label="Type 2", value="hot_dog_box")
|
319 |
+
d2 = gradio.Dropdown(density_options, label="Density 2", value="1.00")
|
320 |
+
th2 = gradio.Dropdown(thickness_options, label="Thickness 2", value="2")
|
321 |
with gradio.Column(min_width=250):
|
322 |
img2 = gradio.Image(label="Endpoint 2")
|
323 |
|