Spaces:
Running
Running
Generate and display endpoints
Browse files
app.py
CHANGED
@@ -242,9 +242,10 @@ density_options = ["{:.2f}".format(x) for x in numpy.linspace(0.1, 1, 10)]
|
|
242 |
thickness_options = [str(int(x)) for x in numpy.linspace(0, 10, 11)]
|
243 |
interpolation_options = [str(int(x)) for x in [3, 5, 10, 20]]
|
244 |
|
|
|
245 |
def interpolate(t1, t2, d1, d2, th1, th2, steps):
|
|
|
246 |
decoder_model_boxes = tensorflow.keras.models.load_model('data/decoder_model_boxes', compile=False)
|
247 |
-
# # compile=False ignores a warning from tensorflow, can be removed to see warning
|
248 |
|
249 |
# # import the encoder model architecture
|
250 |
json_file_loaded = open('data/model.json', 'r')
|
@@ -293,16 +294,32 @@ def interpolate(t1, t2, d1, d2, th1, th2, steps):
|
|
293 |
|
294 |
return transition_region
|
295 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
with gradio.Blocks() as demo:
|
297 |
with gradio.Row():
|
298 |
with gradio.Column():
|
299 |
t1 = gradio.Dropdown(endpoint_types, label="Type 1", value=random.choice(endpoint_types))
|
300 |
d1 = gradio.Dropdown(density_options, label="Density 1", value=random.choice(density_options))
|
301 |
th1 = gradio.Dropdown(thickness_options, label="Thickness 1", value=random.choice(thickness_options))
|
|
|
|
|
|
|
|
|
302 |
with gradio.Column():
|
303 |
t2 = gradio.Dropdown(endpoint_types, label="Type 2", value=random.choice(endpoint_types))
|
304 |
d2 = gradio.Dropdown(density_options, label="Density 2", value=random.choice(density_options))
|
305 |
th2 = gradio.Dropdown(thickness_options, label="Thickness 2", value=random.choice(thickness_options))
|
|
|
|
|
|
|
|
|
306 |
steps = gradio.Dropdown(interpolation_options, label="Interpolation Length", value=random.choice(interpolation_options))
|
307 |
btn = gradio.Button("Run")
|
308 |
img = gradio.Image(label="Transition")
|
|
|
242 |
thickness_options = [str(int(x)) for x in numpy.linspace(0, 10, 11)]
|
243 |
interpolation_options = [str(int(x)) for x in [3, 5, 10, 20]]
|
244 |
|
245 |
+
|
246 |
def interpolate(t1, t2, d1, d2, th1, th2, steps):
|
247 |
+
# Load the decoder model
|
248 |
decoder_model_boxes = tensorflow.keras.models.load_model('data/decoder_model_boxes', compile=False)
|
|
|
249 |
|
250 |
# # import the encoder model architecture
|
251 |
json_file_loaded = open('data/model.json', 'r')
|
|
|
294 |
|
295 |
return transition_region
|
296 |
|
297 |
+
def generate_unit_cell(t, d, th):
|
298 |
+
number_1 = globals()[t](int(th), float(d), 28)
|
299 |
+
|
300 |
+
# resize the array to match the prediction size requirement
|
301 |
+
number_1_expand = np.expand_dims(np.expand_dims(number_1, axis=2), axis=0)
|
302 |
+
|
303 |
+
return number_1_expand[0, :, :, 0]
|
304 |
+
|
305 |
with gradio.Blocks() as demo:
|
306 |
with gradio.Row():
|
307 |
with gradio.Column():
|
308 |
t1 = gradio.Dropdown(endpoint_types, label="Type 1", value=random.choice(endpoint_types))
|
309 |
d1 = gradio.Dropdown(density_options, label="Density 1", value=random.choice(density_options))
|
310 |
th1 = gradio.Dropdown(thickness_options, label="Thickness 1", value=random.choice(thickness_options))
|
311 |
+
img1 = gradio.Image(label="Endpoint 1")
|
312 |
+
t1.change(fn=generate_unit_cell, inputs=[t1, d1, th1], outputs=[img1])
|
313 |
+
d1.change(fn=generate_unit_cell, inputs=[t1, d1, th1], outputs=[img1])
|
314 |
+
th1.change(fn=generate_unit_cell, inputs=[t1, d1, th1], outputs=[img1])
|
315 |
with gradio.Column():
|
316 |
t2 = gradio.Dropdown(endpoint_types, label="Type 2", value=random.choice(endpoint_types))
|
317 |
d2 = gradio.Dropdown(density_options, label="Density 2", value=random.choice(density_options))
|
318 |
th2 = gradio.Dropdown(thickness_options, label="Thickness 2", value=random.choice(thickness_options))
|
319 |
+
img2 = gradio.Image(label="Endpoint 2")
|
320 |
+
t2.change(fn=generate_unit_cell, inputs=[t2, d2, th2], outputs=[img1])
|
321 |
+
d2.change(fn=generate_unit_cell, inputs=[t2, d2, th2], outputs=[img1])
|
322 |
+
th2.change(fn=generate_unit_cell, inputs=[t2, d2, th2], outputs=[img1])
|
323 |
steps = gradio.Dropdown(interpolation_options, label="Interpolation Length", value=random.choice(interpolation_options))
|
324 |
btn = gradio.Button("Run")
|
325 |
img = gradio.Image(label="Transition")
|