ccm commited on
Commit
b999878
·
1 Parent(s): 975132e

Wooooo smaller repo!

Browse files
Files changed (2) hide show
  1. app.py +3 -24
  2. data/train_test_split_data.npz +0 -0
app.py CHANGED
@@ -5,30 +5,9 @@ import tensorflow
5
  import math
6
  from tensorflow.python.framework.ops import disable_eager_execution
7
 
8
- # Becuase important
9
  disable_eager_execution()
10
 
11
- # # Load the training and testing data
12
- # load_data = numpy.load('data/train_test_split_data.npz') # Data saved by the VAE
13
- #
14
- # # Convert Data to Tuples and Assign to respective variables
15
- # box_matrix_train, box_density_train, additional_pixels_train, box_shape_train = tuple(
16
- # load_data['box_matrix_train']), tuple(load_data['box_density_train']), tuple(
17
- # load_data['additional_pixels_train']), tuple(load_data['box_shape_train'])
18
- # box_matrix_test, box_density_test, additional_pixels_test, box_shape_test = tuple(load_data['box_matrix_test']), tuple(
19
- # load_data['box_density_test']), tuple(load_data['additional_pixels_test']), tuple(load_data['box_shape_test'])
20
- # testX = box_matrix_test # Shows the relationship to the MNIST Dataset vs the Shape Dataset
21
- # image_size = numpy.shape(testX)[-1] # Determines the size of the images
22
- # test_data = numpy.reshape(testX, (len(testX), image_size, image_size, 1))
23
-
24
- # Creates tuples that contain all of the data generated
25
- # allX = numpy.append(box_matrix_train, box_matrix_test, axis=0)
26
- # all_box_density = numpy.append(box_density_train, box_density_test, axis=0)
27
- # all_additional_pixels = numpy.append(additional_pixels_train, additional_pixels_test, axis=0)
28
- # all_box_shape = numpy.append(box_shape_train, box_shape_test, axis=0)
29
- # all_data = numpy.reshape(allX, (len(allX), image_size, image_size, 1))
30
-
31
-
32
  def basic_box_array(image_size):
33
  A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
34
  # Creates the outside edges of the box
@@ -287,8 +266,8 @@ def interpolate(t1, t2, d1, d2, th1, th2, steps):
287
  latent_matrix.append(new_column)
288
  latent_matrix = numpy.array(latent_matrix).T # Transposes the matrix so that each row can be easily indexed
289
 
290
- plot_rows = 2
291
- plot_columns = num_interp + 2
292
 
293
  predicted_interps = [number_1_expand[0, :, :, 0]]
294
 
 
5
  import math
6
  from tensorflow.python.framework.ops import disable_eager_execution
7
 
8
+ # Because important
9
  disable_eager_execution()
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  def basic_box_array(image_size):
12
  A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
13
  # Creates the outside edges of the box
 
266
  latent_matrix.append(new_column)
267
  latent_matrix = numpy.array(latent_matrix).T # Transposes the matrix so that each row can be easily indexed
268
 
269
+ # plot_rows = 2
270
+ # plot_columns = num_interp + 2
271
 
272
  predicted_interps = [number_1_expand[0, :, :, 0]]
273
 
data/train_test_split_data.npz DELETED
Binary file (32.1 kB)