ccm commited on
Commit
f407850
·
1 Parent(s): 00adeb9

Cleanup and PEP8

Browse files
Files changed (1) hide show
  1. app.py +43 -44
app.py CHANGED
@@ -1,46 +1,33 @@
1
  import random
2
- import numpy as np
3
- import matplotlib.pyplot as plt
4
- from matplotlib.offsetbox import OffsetImage, AnnotationBbox
5
  import tensorflow
6
  from tensorflow.python.framework.ops import disable_eager_execution
7
- import pandas as pd
8
  import math
9
 
10
-
11
  disable_eager_execution()
12
 
13
- load_data = np.load('data/train_test_split_data.npz') # Data saved by the VAE
 
14
 
15
  # Convert Data to Tuples and Assign to respective variables
16
  box_matrix_train, box_density_train, additional_pixels_train, box_shape_train = tuple(load_data['box_matrix_train']), tuple(load_data['box_density_train']), tuple(load_data['additional_pixels_train']), tuple(load_data['box_shape_train'])
17
  box_matrix_test, box_density_test, additional_pixels_test, box_shape_test = tuple(load_data['box_matrix_test']), tuple(load_data['box_density_test']), tuple(load_data['additional_pixels_test']), tuple(load_data['box_shape_test'])
18
  testX = box_matrix_test # Shows the relationship to the MNIST Dataset vs the Shape Dataset
19
- image_size = np.shape(testX)[-1] # Determines the size of the images
20
- test_data = np.reshape(testX, (len(testX), image_size, image_size, 1))
21
 
22
  # Creates tuples that contain all of the data generated
23
- allX = np.append(box_matrix_train,box_matrix_test, axis=0)
24
- all_box_density = np.append(box_density_train, box_density_test, axis=0)
25
- all_additional_pixels = np.append(additional_pixels_train, additional_pixels_test,axis=0)
26
- all_box_shape = np.append(box_shape_train, box_shape_test,axis=0)
27
- all_data = np.reshape(allX, (len(allX), image_size, image_size, 1))
28
-
29
- # train_latent_points = []
30
- # train_data = np.reshape(box_matrix_train, (len(box_matrix_train), image_size, image_size, 1))
31
- # for i in range(len(box_shape_train)):
32
- # predicted_train = encoder_model_boxes.predict(np.array([train_data[i]]))
33
- # train_latent_points.append(predicted_train[0])
34
- # train_latent_points = np.array(train_latent_points)
35
-
36
- shapes = ("basic_box", "diagonal_box_split", "horizontal_vertical_box_split", "back_slash_box", "forward_slash_box",
37
- "back_slash_plus_box", "forward_slash_plus_box", "hot_dog_box", "hamburger_box", "x_hamburger_box",
38
- "x_hot_dog_box", "x_plus_box")
39
 
40
  import math
41
 
42
  def basic_box_array(image_size):
43
- A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
44
  # Creates the outside edges of the box
45
  for i in range(image_size):
46
  for j in range(image_size):
@@ -48,8 +35,9 @@ def basic_box_array(image_size):
48
  A[i][j] = 1
49
  return A
50
 
 
51
  def back_slash_array(image_size):
52
- A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
53
  for i in range(image_size):
54
  for j in range(image_size):
55
  if i == j:
@@ -57,7 +45,7 @@ def back_slash_array(image_size):
57
  return A
58
 
59
  def forward_slash_array(image_size):
60
- A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
61
  for i in range(image_size):
62
  for j in range(image_size):
63
  if i == (image_size-1)-j:
@@ -66,7 +54,7 @@ def forward_slash_array(image_size):
66
 
67
  def hot_dog_array(image_size):
68
  # Places pixels down the vertical axis to split the box
69
- A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
70
  for i in range(image_size):
71
  for j in range(image_size):
72
  if j == math.floor((image_size - 1) / 2) or j == math.ceil((image_size - 1) / 2):
@@ -75,7 +63,7 @@ def hot_dog_array(image_size):
75
 
76
  def hamburger_array(image_size):
77
  # Places pixels across the horizontal axis to split the box
78
- A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
79
  for i in range(image_size):
80
  for j in range(image_size):
81
  if i == math.floor((image_size - 1) / 2) or i == math.ceil((image_size - 1) / 2):
@@ -83,7 +71,7 @@ def hamburger_array(image_size):
83
  return A
84
 
85
  def center_array(image_size):
86
- A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
87
  for i in range(image_size):
88
  for j in range(image_size):
89
  if i == math.floor((image_size-1)/2) and j == math.ceil((image_size-1)/2):
@@ -96,6 +84,7 @@ def center_array(image_size):
96
  A[i][j] = 1
97
  return A
98
 
 
99
  def update_array(array_original, array_new, image_size):
100
  A = array_original
101
  for i in range(image_size):
@@ -104,10 +93,11 @@ def update_array(array_original, array_new, image_size):
104
  A[i][j] = 1
105
  return A
106
 
 
107
  def add_pixels(array_original, additional_pixels, image_size):
108
  # Adds pixels to the thickness of each component of the box
109
  A = array_original
110
- A_updated = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
111
  for dens in range(additional_pixels):
112
  for i in range(1, image_size - 1):
113
  for j in range(1, image_size - 1):
@@ -123,6 +113,7 @@ def basic_box(additional_pixels, density, image_size):
123
  A = add_pixels(A, additional_pixels, image_size)
124
  return A*density
125
 
 
126
  def horizontal_vertical_box_split(additional_pixels, density, image_size):
127
  A = basic_box_array(image_size) # Creates the outside edges of the box
128
  # Place pixels across the horizontal and vertical axes to split the box
@@ -132,6 +123,7 @@ def horizontal_vertical_box_split(additional_pixels, density, image_size):
132
  A = add_pixels(A, additional_pixels, image_size)
133
  return A*density
134
 
 
135
  def diagonal_box_split(additional_pixels, density, image_size):
136
  A = basic_box_array(image_size) # Creates the outside edges of the box
137
 
@@ -144,30 +136,35 @@ def diagonal_box_split(additional_pixels, density, image_size):
144
  A = add_pixels(A, additional_pixels, image_size)
145
  return A*density
146
 
 
147
  def back_slash_box(additional_pixels, density, image_size):
148
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
149
  A = update_array(A, back_slash_array(image_size), image_size)
150
  A = add_pixels(A, additional_pixels, image_size)
151
  return A * density
152
 
 
153
  def forward_slash_box(additional_pixels, density, image_size):
154
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
155
  A = update_array(A, forward_slash_array(image_size), image_size)
156
  A = add_pixels(A, additional_pixels, image_size)
157
  return A * density
158
 
 
159
  def hot_dog_box(additional_pixels, density, image_size):
160
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
161
  A = update_array(A, hot_dog_array(image_size), image_size)
162
  A = add_pixels(A, additional_pixels, image_size)
163
  return A * density
164
 
 
165
  def hamburger_box(additional_pixels, density, image_size):
166
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
167
  A = update_array(A, hamburger_array(image_size), image_size)
168
  A = add_pixels(A, additional_pixels, image_size)
169
  return A * density
170
 
 
171
  def x_plus_box(additional_pixels, density, image_size):
172
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
173
  A = update_array(A, hot_dog_array(image_size), image_size)
@@ -177,6 +174,7 @@ def x_plus_box(additional_pixels, density, image_size):
177
  A = add_pixels(A, additional_pixels, image_size)
178
  return A * density
179
 
 
180
  def forward_slash_plus_box(additional_pixels, density, image_size):
181
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
182
  A = update_array(A, hot_dog_array(image_size), image_size)
@@ -186,6 +184,7 @@ def forward_slash_plus_box(additional_pixels, density, image_size):
186
  A = add_pixels(A, additional_pixels, image_size)
187
  return A * density
188
 
 
189
  def back_slash_plus_box(additional_pixels, density, image_size):
190
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
191
  A = update_array(A, hot_dog_array(image_size), image_size)
@@ -195,6 +194,7 @@ def back_slash_plus_box(additional_pixels, density, image_size):
195
  A = add_pixels(A, additional_pixels, image_size)
196
  return A * density
197
 
 
198
  def x_hot_dog_box(additional_pixels, density, image_size):
199
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
200
  A = update_array(A, hot_dog_array(image_size), image_size)
@@ -204,6 +204,7 @@ def x_hot_dog_box(additional_pixels, density, image_size):
204
  A = add_pixels(A, additional_pixels, image_size)
205
  return A * density
206
 
 
207
  def x_hamburger_box(additional_pixels, density, image_size):
208
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
209
  # A = update_array(A, hot_dog_array(image_size), image_size)
@@ -213,6 +214,7 @@ def x_hamburger_box(additional_pixels, density, image_size):
213
  A = add_pixels(A, additional_pixels, image_size)
214
  return A * density
215
 
 
216
  def center_box(additional_pixels, density, image_size):
217
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
218
  A = update_array(A, center_array(image_size), image_size)
@@ -220,7 +222,6 @@ def center_box(additional_pixels, density, image_size):
220
  return A * density
221
 
222
 
223
-
224
  import tensorflow as tf
225
  sess = tf.compat.v1.Session()
226
 
@@ -230,9 +231,10 @@ K.set_session(sess)
230
  # Gradio Interface
231
 
232
  import gradio
233
- import numpy
234
 
235
- endpoint_types = shapes
 
 
236
  density_options = ["{:.2f}".format(x) for x in numpy.linspace(0.1, 1, 10)]
237
  thickness_options = [str(int(x)) for x in numpy.linspace(0, 10, 11)]
238
  interpolation_options = [str(int(x)) for x in [3, 5, 10, 20]]
@@ -257,8 +259,8 @@ def interpolate(t1, t2, d1, d2, th1, th2, steps):
257
  number_2 = globals()[t2](int(th2), float(d2), 28)
258
 
259
  # resize the array to match the prediction size requirement
260
- number_1_expand = np.expand_dims(np.expand_dims(number_1, axis=2), axis=0)
261
- number_2_expand = np.expand_dims(np.expand_dims(number_2, axis=2), axis=0)
262
 
263
  # Determine the latent point that will represent our desired number
264
  latent_point_1 = encoder_model_boxes.predict(number_1_expand)[0]
@@ -268,9 +270,9 @@ def interpolate(t1, t2, d1, d2, th1, th2, steps):
268
  num_interp = num_internal # the number of images to be pictured
269
  latent_matrix = [] # This will contain the latent points of the interpolation
270
  for column in range(latent_dimensionality):
271
- new_column = np.linspace(latent_point_1[column], latent_point_2[column], num_interp)
272
  latent_matrix.append(new_column)
273
- latent_matrix = np.array(latent_matrix).T # Transposes the matrix so that each row can be easily indexed
274
 
275
  plot_rows = 2
276
  plot_columns = num_interp + 2
@@ -278,7 +280,7 @@ def interpolate(t1, t2, d1, d2, th1, th2, steps):
278
  predicted_interps = [number_1_expand[0, :, :, 0]]
279
 
280
  for latent_point in range(2, num_interp + 2): # cycles the latent points through the decoder model to create images
281
- generated_image = decoder_model_boxes.predict(np.array([latent_matrix[latent_point - 2]]))[0] # generates an interpolated image based on the latent point
282
  predicted_interps.append(generated_image[:, :, -1])
283
 
284
  predicted_interps.append(number_2_expand[0, :, :, 0])
@@ -289,13 +291,10 @@ def interpolate(t1, t2, d1, d2, th1, th2, steps):
289
 
290
  return transition_region
291
 
292
- def generate_unit_cell(t, d, th):
293
- number_1 = globals()[t](int(th), float(d), 28)
294
 
295
- # resize the array to match the prediction size requirement
296
- number_1_expand = np.expand_dims(np.expand_dims(number_1, axis=2), axis=0)
297
 
298
- return number_1_expand[0, :, :, 0]
299
 
300
  with gradio.Blocks() as demo:
301
  with gradio.Row():
 
1
  import random
2
+ import numpy
 
 
3
  import tensorflow
4
  from tensorflow.python.framework.ops import disable_eager_execution
 
5
  import math
6
 
7
+ # Becuase important
8
  disable_eager_execution()
9
 
10
+ # Load the training and testing data
11
+ load_data = numpy.load('data/train_test_split_data.npz') # Data saved by the VAE
12
 
13
  # Convert Data to Tuples and Assign to respective variables
14
  box_matrix_train, box_density_train, additional_pixels_train, box_shape_train = tuple(load_data['box_matrix_train']), tuple(load_data['box_density_train']), tuple(load_data['additional_pixels_train']), tuple(load_data['box_shape_train'])
15
  box_matrix_test, box_density_test, additional_pixels_test, box_shape_test = tuple(load_data['box_matrix_test']), tuple(load_data['box_density_test']), tuple(load_data['additional_pixels_test']), tuple(load_data['box_shape_test'])
16
  testX = box_matrix_test # Shows the relationship to the MNIST Dataset vs the Shape Dataset
17
+ image_size = numpy.shape(testX)[-1] # Determines the size of the images
18
+ test_data = numpy.reshape(testX, (len(testX), image_size, image_size, 1))
19
 
20
  # Creates tuples that contain all of the data generated
21
+ allX = numpy.append(box_matrix_train,box_matrix_test, axis=0)
22
+ all_box_density = numpy.append(box_density_train, box_density_test, axis=0)
23
+ all_additional_pixels = numpy.append(additional_pixels_train, additional_pixels_test,axis=0)
24
+ all_box_shape = numpy.append(box_shape_train, box_shape_test,axis=0)
25
+ all_data = numpy.reshape(allX, (len(allX), image_size, image_size, 1))
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  import math
28
 
29
  def basic_box_array(image_size):
30
+ A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
31
  # Creates the outside edges of the box
32
  for i in range(image_size):
33
  for j in range(image_size):
 
35
  A[i][j] = 1
36
  return A
37
 
38
+
39
  def back_slash_array(image_size):
40
+ A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
41
  for i in range(image_size):
42
  for j in range(image_size):
43
  if i == j:
 
45
  return A
46
 
47
  def forward_slash_array(image_size):
48
+ A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
49
  for i in range(image_size):
50
  for j in range(image_size):
51
  if i == (image_size-1)-j:
 
54
 
55
  def hot_dog_array(image_size):
56
  # Places pixels down the vertical axis to split the box
57
+ A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
58
  for i in range(image_size):
59
  for j in range(image_size):
60
  if j == math.floor((image_size - 1) / 2) or j == math.ceil((image_size - 1) / 2):
 
63
 
64
  def hamburger_array(image_size):
65
  # Places pixels across the horizontal axis to split the box
66
+ A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
67
  for i in range(image_size):
68
  for j in range(image_size):
69
  if i == math.floor((image_size - 1) / 2) or i == math.ceil((image_size - 1) / 2):
 
71
  return A
72
 
73
  def center_array(image_size):
74
+ A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
75
  for i in range(image_size):
76
  for j in range(image_size):
77
  if i == math.floor((image_size-1)/2) and j == math.ceil((image_size-1)/2):
 
84
  A[i][j] = 1
85
  return A
86
 
87
+
88
  def update_array(array_original, array_new, image_size):
89
  A = array_original
90
  for i in range(image_size):
 
93
  A[i][j] = 1
94
  return A
95
 
96
+
97
  def add_pixels(array_original, additional_pixels, image_size):
98
  # Adds pixels to the thickness of each component of the box
99
  A = array_original
100
+ A_updated = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
101
  for dens in range(additional_pixels):
102
  for i in range(1, image_size - 1):
103
  for j in range(1, image_size - 1):
 
113
  A = add_pixels(A, additional_pixels, image_size)
114
  return A*density
115
 
116
+
117
  def horizontal_vertical_box_split(additional_pixels, density, image_size):
118
  A = basic_box_array(image_size) # Creates the outside edges of the box
119
  # Place pixels across the horizontal and vertical axes to split the box
 
123
  A = add_pixels(A, additional_pixels, image_size)
124
  return A*density
125
 
126
+
127
  def diagonal_box_split(additional_pixels, density, image_size):
128
  A = basic_box_array(image_size) # Creates the outside edges of the box
129
 
 
136
  A = add_pixels(A, additional_pixels, image_size)
137
  return A*density
138
 
139
+
140
  def back_slash_box(additional_pixels, density, image_size):
141
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
142
  A = update_array(A, back_slash_array(image_size), image_size)
143
  A = add_pixels(A, additional_pixels, image_size)
144
  return A * density
145
 
146
+
147
  def forward_slash_box(additional_pixels, density, image_size):
148
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
149
  A = update_array(A, forward_slash_array(image_size), image_size)
150
  A = add_pixels(A, additional_pixels, image_size)
151
  return A * density
152
 
153
+
154
  def hot_dog_box(additional_pixels, density, image_size):
155
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
156
  A = update_array(A, hot_dog_array(image_size), image_size)
157
  A = add_pixels(A, additional_pixels, image_size)
158
  return A * density
159
 
160
+
161
  def hamburger_box(additional_pixels, density, image_size):
162
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
163
  A = update_array(A, hamburger_array(image_size), image_size)
164
  A = add_pixels(A, additional_pixels, image_size)
165
  return A * density
166
 
167
+
168
  def x_plus_box(additional_pixels, density, image_size):
169
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
170
  A = update_array(A, hot_dog_array(image_size), image_size)
 
174
  A = add_pixels(A, additional_pixels, image_size)
175
  return A * density
176
 
177
+
178
  def forward_slash_plus_box(additional_pixels, density, image_size):
179
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
180
  A = update_array(A, hot_dog_array(image_size), image_size)
 
184
  A = add_pixels(A, additional_pixels, image_size)
185
  return A * density
186
 
187
+
188
  def back_slash_plus_box(additional_pixels, density, image_size):
189
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
190
  A = update_array(A, hot_dog_array(image_size), image_size)
 
194
  A = add_pixels(A, additional_pixels, image_size)
195
  return A * density
196
 
197
+
198
  def x_hot_dog_box(additional_pixels, density, image_size):
199
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
200
  A = update_array(A, hot_dog_array(image_size), image_size)
 
204
  A = add_pixels(A, additional_pixels, image_size)
205
  return A * density
206
 
207
+
208
  def x_hamburger_box(additional_pixels, density, image_size):
209
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
210
  # A = update_array(A, hot_dog_array(image_size), image_size)
 
214
  A = add_pixels(A, additional_pixels, image_size)
215
  return A * density
216
 
217
+
218
  def center_box(additional_pixels, density, image_size):
219
  A = basic_box_array(image_size) # Initializes A matrix with 0 values
220
  A = update_array(A, center_array(image_size), image_size)
 
222
  return A * density
223
 
224
 
 
225
  import tensorflow as tf
226
  sess = tf.compat.v1.Session()
227
 
 
231
  # Gradio Interface
232
 
233
  import gradio
 
234
 
235
+ endpoint_types = ("basic_box", "diagonal_box_split", "horizontal_vertical_box_split", "back_slash_box", "forward_slash_box",
236
+ "back_slash_plus_box", "forward_slash_plus_box", "hot_dog_box", "hamburger_box", "x_hamburger_box",
237
+ "x_hot_dog_box", "x_plus_box")
238
  density_options = ["{:.2f}".format(x) for x in numpy.linspace(0.1, 1, 10)]
239
  thickness_options = [str(int(x)) for x in numpy.linspace(0, 10, 11)]
240
  interpolation_options = [str(int(x)) for x in [3, 5, 10, 20]]
 
259
  number_2 = globals()[t2](int(th2), float(d2), 28)
260
 
261
  # resize the array to match the prediction size requirement
262
+ number_1_expand = numpy.expand_dims(numpy.expand_dims(number_1, axis=2), axis=0)
263
+ number_2_expand = numpy.expand_dims(numpy.expand_dims(number_2, axis=2), axis=0)
264
 
265
  # Determine the latent point that will represent our desired number
266
  latent_point_1 = encoder_model_boxes.predict(number_1_expand)[0]
 
270
  num_interp = num_internal # the number of images to be pictured
271
  latent_matrix = [] # This will contain the latent points of the interpolation
272
  for column in range(latent_dimensionality):
273
+ new_column = numpy.linspace(latent_point_1[column], latent_point_2[column], num_interp)
274
  latent_matrix.append(new_column)
275
+ latent_matrix = numpy.array(latent_matrix).T # Transposes the matrix so that each row can be easily indexed
276
 
277
  plot_rows = 2
278
  plot_columns = num_interp + 2
 
280
  predicted_interps = [number_1_expand[0, :, :, 0]]
281
 
282
  for latent_point in range(2, num_interp + 2): # cycles the latent points through the decoder model to create images
283
+ generated_image = decoder_model_boxes.predict(numpy.array([latent_matrix[latent_point - 2]]))[0] # generates an interpolated image based on the latent point
284
  predicted_interps.append(generated_image[:, :, -1])
285
 
286
  predicted_interps.append(number_2_expand[0, :, :, 0])
 
291
 
292
  return transition_region
293
 
 
 
294
 
295
+ def generate_unit_cell(t, d, th):
296
+ return globals()[t](int(th), float(d), 28)
297
 
 
298
 
299
  with gradio.Blocks() as demo:
300
  with gradio.Row():