cnicu's picture
Emotion detection space.
5b974e3
raw
history blame
670 Bytes
import streamlit as st
from transformers import pipeline
@st.cache_resource(show_spinner="Loading model...")
def load_pipe():
pipe = pipeline(task="text-classification", model="cnicu/tweet_emotions_classifier")
return pipe
def classify_emotion(text: str, pipe: pipeline) -> str:
prediction = pipe(text)
return prediction
st.title("Tweet emotions classification")
text = st.text_area("Tweet to classify", label_visibility='hidden')
if st.button("Classify tweet", disabled= text == ''):
with st.spinner("In progress..."):
prediction = classify_emotion(text, load_pipe())
st.success(f"Tweet's emotion: **{prediction[0]['label']}**")