Spaces:
Sleeping
Sleeping
Restore working
Browse files
app.py
CHANGED
@@ -5,33 +5,12 @@ import asyncio
|
|
5 |
import tempfile
|
6 |
import os
|
7 |
import re # Import the regular expression module
|
8 |
-
import struct
|
9 |
-
import wave
|
10 |
-
|
11 |
-
# Function to create a temporary silent WAV file
|
12 |
-
def create_silent_wav(duration, temp_dir, sample_rate=44100, num_channels=1, sample_width=2):
|
13 |
-
"""Creates a temporary WAV file containing silence.
|
14 |
-
|
15 |
-
Args:
|
16 |
-
duration (float): Duration of silence in seconds.
|
17 |
-
temp_dir (str): Directory to save the temporary file.
|
18 |
-
sample_rate (int): Sample rate of the audio (samples per second).
|
19 |
-
num_channels (int): Number of audio channels (1 for mono, 2 for stereo).
|
20 |
-
sample_width (int): Sample width in bytes (e.g., 2 for 16-bit).
|
21 |
-
|
22 |
-
Returns:
|
23 |
-
str: Path to the temporary silent WAV file.
|
24 |
-
"""
|
25 |
-
num_frames = int(duration * sample_rate)
|
26 |
-
silent_data = b'\x00' * (num_frames * num_channels * sample_width)
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
wf.writeframes(silent_data)
|
34 |
-
return temp_wav_path
|
35 |
|
36 |
# Text-to-speech function for a single paragraph with SS handling
|
37 |
async def paragraph_to_speech(text, voice, rate, pitch):
|
@@ -48,16 +27,15 @@ async def paragraph_to_speech(text, voice, rate, pitch):
|
|
48 |
return None, [] # Return None for audio path and empty list for silence
|
49 |
|
50 |
audio_segments = []
|
51 |
-
|
52 |
parts = re.split(r'(SS\d+\.?\d*)', text)
|
53 |
|
54 |
for part in parts:
|
55 |
if re.match(r'SS\d+\.?\d*', part):
|
56 |
try:
|
57 |
silence_duration = float(part[2:])
|
58 |
-
|
59 |
-
|
60 |
-
audio_segments.append(silent_wav_path)
|
61 |
except ValueError:
|
62 |
print(f"Warning: Invalid silence duration format: {part}")
|
63 |
elif part.strip():
|
@@ -93,19 +71,21 @@ async def paragraph_to_speech(text, voice, rate, pitch):
|
|
93 |
current_pitch = -30
|
94 |
current_rate = -20
|
95 |
else:
|
|
|
|
|
96 |
current_voice = (voice or default_voice).split(" - ")[0]
|
97 |
processed_text=part[:]
|
98 |
rate_str = f"{current_rate:+d}%"
|
99 |
pitch_str = f"{current_pitch:+d}Hz"
|
100 |
communicate = edge_tts.Communicate(processed_text, current_voice, rate=rate_str, pitch=pitch_str)
|
101 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".
|
102 |
tmp_path = tmp_file.name
|
103 |
await communicate.save(tmp_path)
|
104 |
audio_segments.append(tmp_path)
|
105 |
else:
|
106 |
audio_segments.append(None) # Empty string
|
107 |
|
108 |
-
return audio_segments,
|
109 |
|
110 |
# Main text-to-speech function that processes paragraphs and silence
|
111 |
async def text_to_speech(text, voice, rate, pitch):
|
@@ -118,9 +98,12 @@ async def text_to_speech(text, voice, rate, pitch):
|
|
118 |
final_audio_segments = []
|
119 |
|
120 |
for paragraph in paragraphs:
|
121 |
-
audio_paths,
|
122 |
if audio_paths:
|
123 |
-
|
|
|
|
|
|
|
124 |
|
125 |
if not any(isinstance(item, str) for item in final_audio_segments):
|
126 |
return None, None # No actual audio generated
|
@@ -128,42 +111,20 @@ async def text_to_speech(text, voice, rate, pitch):
|
|
128 |
if all(not isinstance(item, str) for item in final_audio_segments):
|
129 |
return None, "Only silence markers found."
|
130 |
|
131 |
-
combined_audio_path = tempfile.mktemp(suffix=".
|
132 |
-
with
|
133 |
-
|
134 |
-
|
135 |
-
num_channels = None
|
136 |
-
sample_width = None
|
137 |
-
|
138 |
-
for segment_path in final_audio_segments:
|
139 |
-
if isinstance(segment_path, str):
|
140 |
try:
|
141 |
-
with
|
142 |
-
|
143 |
-
|
144 |
-
current_sample_width = infile.getsampwidth()
|
145 |
-
frames = infile.readframes(infile.getnframes())
|
146 |
-
|
147 |
-
if first_audio:
|
148 |
-
num_channels = current_num_channels
|
149 |
-
sample_rate = current_sample_rate
|
150 |
-
sample_width = current_sample_width
|
151 |
-
outfile.setnchannels(num_channels)
|
152 |
-
outfile.setframerate(sample_rate)
|
153 |
-
outfile.setsampwidth(sample_width)
|
154 |
-
first_audio = False
|
155 |
-
elif (current_num_channels != num_channels or
|
156 |
-
current_sample_rate != sample_rate or
|
157 |
-
current_sample_width != sample_width):
|
158 |
-
print(f"Warning: Audio segment {segment_path} has different format. Skipping.")
|
159 |
-
continue
|
160 |
-
|
161 |
-
outfile.writeframes(frames)
|
162 |
-
os.remove(segment_path) # Clean up individual files
|
163 |
-
except wave.Error as e:
|
164 |
-
print(f"Warning: Error reading WAV file {segment_path}: {e}")
|
165 |
except FileNotFoundError:
|
166 |
-
print(f"Warning: Audio file not found: {
|
|
|
|
|
|
|
|
|
167 |
|
168 |
return combined_audio_path, None
|
169 |
|
@@ -173,12 +134,9 @@ def tts_interface(text, voice, rate, pitch):
|
|
173 |
audio, warning = asyncio.run(text_to_speech(text, voice, rate, pitch))
|
174 |
return audio, warning
|
175 |
|
176 |
-
async def get_voices():
|
177 |
-
voices_list = await edge_tts.list_voices()
|
178 |
-
voices_dict = {v["ShortName"]: f"{v['Name']} - {v['LocaleName']} ({v['Gender']})" for v in voices_list}
|
179 |
-
return voices_dict
|
180 |
-
|
181 |
# Create Gradio application
|
|
|
|
|
182 |
async def create_demo():
|
183 |
voices = await get_voices()
|
184 |
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)" # 👈 Pick one of the available voices
|
@@ -201,7 +159,7 @@ async def create_demo():
|
|
201 |
gr.Audio(label="Generated Audio", type="filepath"),
|
202 |
gr.Markdown(label="Warning", visible=False)
|
203 |
],
|
204 |
-
title="Voicecloning.be Text-to-Speech with Silence Insertion (Paragraph by Paragraph)
|
205 |
description=description,
|
206 |
article="Process text paragraph by paragraph for smoother output and insert silence markers.",
|
207 |
analytics_enabled=False,
|
|
|
5 |
import tempfile
|
6 |
import os
|
7 |
import re # Import the regular expression module
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
|
10 |
+
# Get all available voices
|
11 |
+
async def get_voices():
|
12 |
+
voices = await edge_tts.list_voices()
|
13 |
+
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
|
|
|
|
|
14 |
|
15 |
# Text-to-speech function for a single paragraph with SS handling
|
16 |
async def paragraph_to_speech(text, voice, rate, pitch):
|
|
|
27 |
return None, [] # Return None for audio path and empty list for silence
|
28 |
|
29 |
audio_segments = []
|
30 |
+
silence_durations = []
|
31 |
parts = re.split(r'(SS\d+\.?\d*)', text)
|
32 |
|
33 |
for part in parts:
|
34 |
if re.match(r'SS\d+\.?\d*', part):
|
35 |
try:
|
36 |
silence_duration = float(part[2:])
|
37 |
+
silence_durations.append(silence_duration)
|
38 |
+
audio_segments.append(None) # Placeholder for silence
|
|
|
39 |
except ValueError:
|
40 |
print(f"Warning: Invalid silence duration format: {part}")
|
41 |
elif part.strip():
|
|
|
71 |
current_pitch = -30
|
72 |
current_rate = -20
|
73 |
else:
|
74 |
+
# Use selected voice, or fallback to default
|
75 |
+
#voice_short_name = (voice or default_voice).split(" - ")[0]
|
76 |
current_voice = (voice or default_voice).split(" - ")[0]
|
77 |
processed_text=part[:]
|
78 |
rate_str = f"{current_rate:+d}%"
|
79 |
pitch_str = f"{current_pitch:+d}Hz"
|
80 |
communicate = edge_tts.Communicate(processed_text, current_voice, rate=rate_str, pitch=pitch_str)
|
81 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
82 |
tmp_path = tmp_file.name
|
83 |
await communicate.save(tmp_path)
|
84 |
audio_segments.append(tmp_path)
|
85 |
else:
|
86 |
audio_segments.append(None) # Empty string
|
87 |
|
88 |
+
return audio_segments, silence_durations
|
89 |
|
90 |
# Main text-to-speech function that processes paragraphs and silence
|
91 |
async def text_to_speech(text, voice, rate, pitch):
|
|
|
98 |
final_audio_segments = []
|
99 |
|
100 |
for paragraph in paragraphs:
|
101 |
+
audio_paths, silence_times = await paragraph_to_speech(paragraph, voice, rate, pitch)
|
102 |
if audio_paths:
|
103 |
+
for i, path in enumerate(audio_paths):
|
104 |
+
final_audio_segments.append(path)
|
105 |
+
if i < len(silence_times):
|
106 |
+
final_audio_segments.append(silence_times[i])
|
107 |
|
108 |
if not any(isinstance(item, str) for item in final_audio_segments):
|
109 |
return None, None # No actual audio generated
|
|
|
111 |
if all(not isinstance(item, str) for item in final_audio_segments):
|
112 |
return None, "Only silence markers found."
|
113 |
|
114 |
+
combined_audio_path = tempfile.mktemp(suffix=".mp3")
|
115 |
+
with open(combined_audio_path, 'wb') as outfile:
|
116 |
+
for segment in final_audio_segments:
|
117 |
+
if isinstance(segment, str):
|
|
|
|
|
|
|
|
|
|
|
118 |
try:
|
119 |
+
with open(segment, 'rb') as infile:
|
120 |
+
outfile.write(infile.read())
|
121 |
+
os.remove(segment) # Clean up individual files
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
except FileNotFoundError:
|
123 |
+
print(f"Warning: Audio file not found: {segment}")
|
124 |
+
elif isinstance(segment, (int, float)):
|
125 |
+
# Basic silence insertion (approximate)
|
126 |
+
silence = b'\x00' * int(segment * 44100 * 2) # Assuming 16-bit mono at 44.1kHz
|
127 |
+
outfile.write(silence)
|
128 |
|
129 |
return combined_audio_path, None
|
130 |
|
|
|
134 |
audio, warning = asyncio.run(text_to_speech(text, voice, rate, pitch))
|
135 |
return audio, warning
|
136 |
|
|
|
|
|
|
|
|
|
|
|
137 |
# Create Gradio application
|
138 |
+
import gradio as gr
|
139 |
+
|
140 |
async def create_demo():
|
141 |
voices = await get_voices()
|
142 |
default_voice = "en-US-AndrewMultilingualNeural - en-US (Male)" # 👈 Pick one of the available voices
|
|
|
159 |
gr.Audio(label="Generated Audio", type="filepath"),
|
160 |
gr.Markdown(label="Warning", visible=False)
|
161 |
],
|
162 |
+
title="Voicecloning.be Text-to-Speech with Silence Insertion (Paragraph by Paragraph)",
|
163 |
description=description,
|
164 |
article="Process text paragraph by paragraph for smoother output and insert silence markers.",
|
165 |
analytics_enabled=False,
|