Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models import ModelMixin | |
from timm.models.vision_transformer import Mlp | |
from .attn_layers import Attention, FlashCrossMHAModified, FlashSelfMHAModified, CrossAttention | |
from .embedders import TimestepEmbedder, PatchEmbed, timestep_embedding | |
from .norm_layers import RMSNorm | |
from .poolers import AttentionPool | |
def modulate(x, shift, scale): | |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
class FP32_Layernorm(nn.LayerNorm): | |
def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
origin_dtype = inputs.dtype | |
return F.layer_norm(inputs.float(), self.normalized_shape, self.weight.float(), self.bias.float(), | |
self.eps).to(origin_dtype) | |
class FP32_SiLU(nn.SiLU): | |
def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
return torch.nn.functional.silu(inputs.float(), inplace=False).to(inputs.dtype) | |
class HunYuanDiTBlock(nn.Module): | |
""" | |
A HunYuanDiT block with `add` conditioning. | |
""" | |
def __init__(self, | |
hidden_size, | |
c_emb_size, | |
num_heads, | |
mlp_ratio=4.0, | |
text_states_dim=1024, | |
use_flash_attn=False, | |
qk_norm=False, | |
norm_type="layer", | |
skip=False, | |
): | |
super().__init__() | |
self.use_flash_attn = use_flash_attn | |
use_ele_affine = True | |
if norm_type == "layer": | |
norm_layer = FP32_Layernorm | |
elif norm_type == "rms": | |
norm_layer = RMSNorm | |
else: | |
raise ValueError(f"Unknown norm_type: {norm_type}") | |
# ========================= Self-Attention ========================= | |
self.norm1 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6) | |
if use_flash_attn: | |
self.attn1 = FlashSelfMHAModified(hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=qk_norm) | |
else: | |
self.attn1 = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=qk_norm) | |
# ========================= FFN ========================= | |
self.norm2 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6) | |
mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
approx_gelu = lambda: nn.GELU(approximate="tanh") | |
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0) | |
# ========================= Add ========================= | |
# Simply use add like SDXL. | |
self.default_modulation = nn.Sequential( | |
FP32_SiLU(), | |
nn.Linear(c_emb_size, hidden_size, bias=True) | |
) | |
# ========================= Cross-Attention ========================= | |
if use_flash_attn: | |
self.attn2 = FlashCrossMHAModified(hidden_size, text_states_dim, num_heads=num_heads, qkv_bias=True, | |
qk_norm=qk_norm) | |
else: | |
self.attn2 = CrossAttention(hidden_size, text_states_dim, num_heads=num_heads, qkv_bias=True, | |
qk_norm=qk_norm) | |
self.norm3 = norm_layer(hidden_size, elementwise_affine=True, eps=1e-6) | |
# ========================= Skip Connection ========================= | |
if skip: | |
self.skip_norm = norm_layer(2 * hidden_size, elementwise_affine=True, eps=1e-6) | |
self.skip_linear = nn.Linear(2 * hidden_size, hidden_size) | |
else: | |
self.skip_linear = None | |
def forward(self, x, c=None, text_states=None, freq_cis_img=None, skip=None): | |
# Long Skip Connection | |
if self.skip_linear is not None: | |
cat = torch.cat([x, skip], dim=-1) | |
cat = self.skip_norm(cat) | |
x = self.skip_linear(cat) | |
# Self-Attention | |
shift_msa = self.default_modulation(c).unsqueeze(dim=1) | |
attn_inputs = ( | |
self.norm1(x) + shift_msa, freq_cis_img, | |
) | |
x = x + self.attn1(*attn_inputs)[0] | |
# Cross-Attention | |
cross_inputs = ( | |
self.norm3(x), text_states, freq_cis_img | |
) | |
x = x + self.attn2(*cross_inputs)[0] | |
# FFN Layer | |
mlp_inputs = self.norm2(x) | |
x = x + self.mlp(mlp_inputs) | |
return x | |
class FinalLayer(nn.Module): | |
""" | |
The final layer of HunYuanDiT. | |
""" | |
def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True) | |
self.adaLN_modulation = nn.Sequential( | |
FP32_SiLU(), | |
nn.Linear(c_emb_size, 2 * final_hidden_size, bias=True) | |
) | |
def forward(self, x, c): | |
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) | |
x = modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class HunYuanDiT(ModelMixin, ConfigMixin): | |
""" | |
HunYuanDiT: Diffusion model with a Transformer backbone. | |
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers. | |
Parameters | |
---------- | |
args: argparse.Namespace | |
The arguments parsed by argparse. | |
input_size: tuple | |
The size of the input image. | |
patch_size: int | |
The size of the patch. | |
in_channels: int | |
The number of input channels. | |
hidden_size: int | |
The hidden size of the transformer backbone. | |
depth: int | |
The number of transformer blocks. | |
num_heads: int | |
The number of attention heads. | |
mlp_ratio: float | |
The ratio of the hidden size of the MLP in the transformer block. | |
log_fn: callable | |
The logging function. | |
""" | |
def __init__( | |
self, args, | |
input_size=(32, 32), | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4.0, | |
log_fn=print, | |
): | |
super().__init__() | |
self.args = args | |
self.log_fn = log_fn | |
self.depth = depth | |
self.learn_sigma = args.learn_sigma | |
self.in_channels = in_channels | |
self.out_channels = in_channels * 2 if args.learn_sigma else in_channels | |
self.patch_size = patch_size | |
self.num_heads = num_heads | |
self.hidden_size = hidden_size | |
self.text_states_dim = args.text_states_dim | |
self.text_states_dim_t5 = args.text_states_dim_t5 | |
self.text_len = args.text_len | |
self.text_len_t5 = args.text_len_t5 | |
self.norm = args.norm | |
use_flash_attn = args.infer_mode == 'fa' | |
if use_flash_attn: | |
log_fn(f" Enable Flash Attention.") | |
qk_norm = True # See http://arxiv.org/abs/2302.05442 for details. | |
self.mlp_t5 = nn.Sequential( | |
nn.Linear(self.text_states_dim_t5, self.text_states_dim_t5 * 4, bias=True), | |
FP32_SiLU(), | |
nn.Linear(self.text_states_dim_t5 * 4, self.text_states_dim, bias=True), | |
) | |
# learnable replace | |
self.text_embedding_padding = nn.Parameter( | |
torch.randn(self.text_len + self.text_len_t5, self.text_states_dim, dtype=torch.float32)) | |
# Attention pooling | |
self.pooler = AttentionPool(self.text_len_t5, self.text_states_dim_t5, num_heads=8, output_dim=1024) | |
# Here we use a default learned embedder layer for future extension. | |
self.style_embedder = nn.Embedding(1, hidden_size) | |
# Image size and crop size conditions | |
self.extra_in_dim = 256 * 6 + hidden_size | |
# Text embedding for `add` | |
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size) | |
self.t_embedder = TimestepEmbedder(hidden_size) | |
self.extra_in_dim += 1024 | |
self.extra_embedder = nn.Sequential( | |
nn.Linear(self.extra_in_dim, hidden_size * 4), | |
FP32_SiLU(), | |
nn.Linear(hidden_size * 4, hidden_size, bias=True), | |
) | |
# Image embedding | |
num_patches = self.x_embedder.num_patches | |
log_fn(f" Number of tokens: {num_patches}") | |
# HUnYuanDiT Blocks | |
self.blocks = nn.ModuleList([ | |
HunYuanDiTBlock(hidden_size=hidden_size, | |
c_emb_size=hidden_size, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
text_states_dim=self.text_states_dim, | |
use_flash_attn=use_flash_attn, | |
qk_norm=qk_norm, | |
norm_type=self.norm, | |
skip=layer > depth // 2, | |
) | |
for layer in range(depth) | |
]) | |
self.final_layer = FinalLayer(hidden_size, hidden_size, patch_size, self.out_channels) | |
self.unpatchify_channels = self.out_channels | |
self.initialize_weights() | |
def forward(self, | |
x, | |
t, | |
encoder_hidden_states=None, | |
text_embedding_mask=None, | |
encoder_hidden_states_t5=None, | |
text_embedding_mask_t5=None, | |
image_meta_size=None, | |
style=None, | |
cos_cis_img=None, | |
sin_cis_img=None, | |
return_dict=True, | |
): | |
""" | |
Forward pass of the encoder. | |
Parameters | |
---------- | |
x: torch.Tensor | |
(B, D, H, W) | |
t: torch.Tensor | |
(B) | |
encoder_hidden_states: torch.Tensor | |
CLIP text embedding, (B, L_clip, D) | |
text_embedding_mask: torch.Tensor | |
CLIP text embedding mask, (B, L_clip) | |
encoder_hidden_states_t5: torch.Tensor | |
T5 text embedding, (B, L_t5, D) | |
text_embedding_mask_t5: torch.Tensor | |
T5 text embedding mask, (B, L_t5) | |
image_meta_size: torch.Tensor | |
(B, 6) | |
style: torch.Tensor | |
(B) | |
cos_cis_img: torch.Tensor | |
sin_cis_img: torch.Tensor | |
return_dict: bool | |
Whether to return a dictionary. | |
""" | |
text_states = encoder_hidden_states # 2,77,1024 | |
text_states_t5 = encoder_hidden_states_t5 # 2,256,2048 | |
text_states_mask = text_embedding_mask.bool() # 2,77 | |
text_states_t5_mask = text_embedding_mask_t5.bool() # 2,256 | |
b_t5, l_t5, c_t5 = text_states_t5.shape | |
text_states_t5 = self.mlp_t5(text_states_t5.view(-1, c_t5)) | |
text_states = torch.cat([text_states, text_states_t5.view(b_t5, l_t5, -1)], dim=1) # 2,205,1024 | |
clip_t5_mask = torch.cat([text_states_mask, text_states_t5_mask], dim=-1) | |
clip_t5_mask = clip_t5_mask | |
text_states = torch.where(clip_t5_mask.unsqueeze(2), text_states, self.text_embedding_padding.to(text_states)) | |
_, _, oh, ow = x.shape | |
th, tw = oh // self.patch_size, ow // self.patch_size | |
# ========================= Build time and image embedding ========================= | |
t = self.t_embedder(t) | |
x = self.x_embedder(x) | |
# Get image RoPE embedding according to `reso`lution. | |
freqs_cis_img = (cos_cis_img, sin_cis_img) | |
# ========================= Concatenate all extra vectors ========================= | |
# Build text tokens with pooling | |
extra_vec = self.pooler(encoder_hidden_states_t5) | |
# Build image meta size tokens | |
image_meta_size = timestep_embedding(image_meta_size.view(-1), 256) # [B * 6, 256] | |
if self.args.use_fp16: | |
image_meta_size = image_meta_size.half() | |
image_meta_size = image_meta_size.view(-1, 6 * 256) | |
extra_vec = torch.cat([extra_vec, image_meta_size], dim=1) # [B, D + 6 * 256] | |
# Build style tokens | |
style_embedding = self.style_embedder(style) | |
extra_vec = torch.cat([extra_vec, style_embedding], dim=1) | |
# Concatenate all extra vectors | |
c = t + self.extra_embedder(extra_vec) # [B, D] | |
# ========================= Forward pass through HunYuanDiT blocks ========================= | |
skips = [] | |
for layer, block in enumerate(self.blocks): | |
if layer > self.depth // 2: | |
skip = skips.pop() | |
x = block(x, c, text_states, freqs_cis_img, skip) # (N, L, D) | |
else: | |
x = block(x, c, text_states, freqs_cis_img) # (N, L, D) | |
if layer < (self.depth // 2 - 1): | |
skips.append(x) | |
# ========================= Final layer ========================= | |
x = self.final_layer(x, c) # (N, L, patch_size ** 2 * out_channels) | |
x = self.unpatchify(x, th, tw) # (N, out_channels, H, W) | |
if return_dict: | |
return {'x': x} | |
return x | |
def initialize_weights(self): | |
# Initialize transformer layers: | |
def _basic_init(module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d): | |
w = self.x_embedder.proj.weight.data | |
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
nn.init.constant_(self.x_embedder.proj.bias, 0) | |
# Initialize label embedding table: | |
nn.init.normal_(self.extra_embedder[0].weight, std=0.02) | |
nn.init.normal_(self.extra_embedder[2].weight, std=0.02) | |
# Initialize timestep embedding MLP: | |
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) | |
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) | |
# Zero-out adaLN modulation layers in HunYuanDiT blocks: | |
for block in self.blocks: | |
nn.init.constant_(block.default_modulation[-1].weight, 0) | |
nn.init.constant_(block.default_modulation[-1].bias, 0) | |
# Zero-out output layers: | |
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) | |
nn.init.constant_(self.final_layer.linear.weight, 0) | |
nn.init.constant_(self.final_layer.linear.bias, 0) | |
def unpatchify(self, x, h, w): | |
""" | |
x: (N, T, patch_size**2 * C) | |
imgs: (N, H, W, C) | |
""" | |
c = self.unpatchify_channels | |
p = self.x_embedder.patch_size[0] | |
# h = w = int(x.shape[1] ** 0.5) | |
assert h * w == x.shape[1] | |
x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) | |
x = torch.einsum('nhwpqc->nchpwq', x) | |
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) | |
return imgs | |
################################################################################# | |
# HunYuanDiT Configs # | |
################################################################################# | |
HUNYUAN_DIT_CONFIG = { | |
'DiT-g/2': {'depth': 40, 'hidden_size': 1408, 'patch_size': 2, 'num_heads': 16, 'mlp_ratio': 4.3637}, | |
'DiT-XL/2': {'depth': 28, 'hidden_size': 1152, 'patch_size': 2, 'num_heads': 16}, | |
'DiT-L/2': {'depth': 24, 'hidden_size': 1024, 'patch_size': 2, 'num_heads': 16}, | |
'DiT-B/2': {'depth': 12, 'hidden_size': 768, 'patch_size': 2, 'num_heads': 12}, | |
} | |