File size: 12,950 Bytes
b3f324b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
from __future__ import absolute_import
import os
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
from .pretrained_networks import vgg16, alexnet, squeezenet
import torch.nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
import cv2
from .pwcnet import Network as PWCNet
from .utils import *
def spatial_average(in_tens, keepdim=True):
return in_tens.mean([2,3],keepdim=keepdim)
def mw_spatial_average(in_tens, flow, keepdim=True):
_,_,h,w = in_tens.shape
flow = F.interpolate(flow, (h,w), align_corners=False, mode='bilinear')
flow_mag = torch.sqrt(flow[:,0:1]**2 + flow[:,1:2]**2)
flow_mag = flow_mag / torch.sum(flow_mag, dim=[1,2,3], keepdim=True)
return torch.sum(in_tens*flow_mag, dim=[2,3],keepdim=keepdim)
def mtw_spatial_average(in_tens, flow, texture, keepdim=True):
_,_,h,w = in_tens.shape
flow = F.interpolate(flow, (h,w), align_corners=False, mode='bilinear')
texture = F.interpolate(texture, (h,w), align_corners=False, mode='bilinear')
flow_mag = torch.sqrt(flow[:,0:1]**2 + flow[:,1:2]**2)
flow_mag = (flow_mag - flow_mag.min()) / (flow_mag.max() - flow_mag.min()) + 1e-6
texture = (texture - texture.min()) / (texture.max() - texture.min()) + 1e-6
weight = flow_mag / texture
weight /= torch.sum(weight)
return torch.sum(in_tens*weight, dim=[2,3],keepdim=keepdim)
def m2w_spatial_average(in_tens, flow, keepdim=True):
_,_,h,w = in_tens.shape
flow = F.interpolate(flow, (h,w), align_corners=False, mode='bilinear')
flow_mag = flow[:,0:1]**2 + flow[:,1:2]**2 # B,1,H,W
flow_mag = flow_mag / torch.sum(flow_mag)
return torch.sum(in_tens*flow_mag, dim=[2,3],keepdim=keepdim)
def upsample(in_tens, out_HW=(64,64)): # assumes scale factor is same for H and W
in_H, in_W = in_tens.shape[2], in_tens.shape[3]
return nn.Upsample(size=out_HW, mode='bilinear', align_corners=False)(in_tens)
# Learned perceptual metric
class LPIPS(nn.Module):
def __init__(self, pretrained=True, net='alex', version='0.1', lpips=True, spatial=False,
pnet_rand=False, pnet_tune=False, use_dropout=True, model_path=None, eval_mode=True, verbose=False):
# lpips - [True] means with linear calibration on top of base network
# pretrained - [True] means load linear weights
super(LPIPS, self).__init__()
if(verbose):
print('Setting up [%s] perceptual loss: trunk [%s], v[%s], spatial [%s]'%
('LPIPS' if lpips else 'baseline', net, version, 'on' if spatial else 'off'))
self.pnet_type = net
self.pnet_tune = pnet_tune
self.pnet_rand = pnet_rand
self.spatial = spatial
self.lpips = lpips # false means baseline of just averaging all layers
self.version = version
self.scaling_layer = ScalingLayer()
if(self.pnet_type in ['vgg','vgg16']):
net_type = vgg16
self.chns = [64,128,256,512,512]
elif(self.pnet_type=='alex'):
net_type = alexnet
self.chns = [64,192,384,256,256]
elif(self.pnet_type=='squeeze'):
net_type = squeezenet
self.chns = [64,128,256,384,384,512,512]
self.L = len(self.chns)
self.net = net_type(pretrained=not self.pnet_rand, requires_grad=self.pnet_tune)
if(lpips):
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
self.lins = [self.lin0,self.lin1,self.lin2,self.lin3,self.lin4]
if(self.pnet_type=='squeeze'): # 7 layers for squeezenet
self.lin5 = NetLinLayer(self.chns[5], use_dropout=use_dropout)
self.lin6 = NetLinLayer(self.chns[6], use_dropout=use_dropout)
self.lins+=[self.lin5,self.lin6]
self.lins = nn.ModuleList(self.lins)
if(pretrained):
if(model_path is None):
import inspect
import os
model_path = os.path.abspath(os.path.join(inspect.getfile(self.__init__), '..', 'weights/v%s/%s.pth'%(version,net)))
if(verbose):
print('Loading model from: %s'%model_path)
self.load_state_dict(torch.load(model_path, map_location='cpu'), strict=False)
if(eval_mode):
self.eval()
def forward(self, in0, in1, retPerLayer=False, normalize=False):
if normalize: # turn on this flag if input is [0,1] so it can be adjusted to [-1, +1]
in0 = 2 * in0 - 1
in1 = 2 * in1 - 1
# v0.0 - original release had a bug, where input was not scaled
in0_input, in1_input = (self.scaling_layer(in0), self.scaling_layer(in1)) if self.version=='0.1' else (in0, in1)
outs0, outs1 = self.net.forward(in0_input), self.net.forward(in1_input)
feats0, feats1, diffs = {}, {}, {}
for kk in range(self.L):
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
diffs[kk] = (feats0[kk]-feats1[kk])**2
if(self.lpips):
if(self.spatial):
res = [upsample(self.lins[kk](diffs[kk]), out_HW=in0.shape[2:]) for kk in range(self.L)]
else:
res = [spatial_average(self.lins[kk](diffs[kk]), keepdim=True) for kk in range(self.L)]
else:
if(self.spatial):
res = [upsample(diffs[kk].sum(dim=1,keepdim=True), out_HW=in0.shape[2:]) for kk in range(self.L)]
else:
res = [spatial_average(diffs[kk].sum(dim=1,keepdim=True), keepdim=True) for kk in range(self.L)]
# val = res[0]
# for l in range(1,self.L):
# val += res[l]
# print(val)
# a = spatial_average(self.lins[kk](diffs[kk]), keepdim=True)
# b = torch.max(self.lins[kk](feats0[kk]**2))
# for kk in range(self.L):
# a += spatial_average(self.lins[kk](diffs[kk]), keepdim=True)
# b = torch.max(b,torch.max(self.lins[kk](feats0[kk]**2)))
# a = a/self.L
# from IPython import embed
# embed()
# return 10*torch.log10(b/a)
# if(retPerLayer):
# return (val, res)
# else:
return torch.sum(torch.cat(res, 1), dim=(1,2,3), keepdims=False)
class ScalingLayer(nn.Module):
def __init__(self):
super(ScalingLayer, self).__init__()
self.register_buffer('shift', torch.Tensor([-.030,-.088,-.188])[None,:,None,None])
self.register_buffer('scale', torch.Tensor([.458,.448,.450])[None,:,None,None])
def forward(self, inp):
return (inp - self.shift) / self.scale
class NetLinLayer(nn.Module):
''' A single linear layer which does a 1x1 conv '''
def __init__(self, chn_in, chn_out=1, use_dropout=False):
super(NetLinLayer, self).__init__()
layers = [nn.Dropout(),] if(use_dropout) else []
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False),]
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class Dist2LogitLayer(nn.Module):
''' takes 2 distances, puts through fc layers, spits out value between [0,1] (if use_sigmoid is True) '''
def __init__(self, chn_mid=32, use_sigmoid=True):
super(Dist2LogitLayer, self).__init__()
layers = [nn.Conv2d(5, chn_mid, 1, stride=1, padding=0, bias=True),]
layers += [nn.LeakyReLU(0.2,True),]
layers += [nn.Conv2d(chn_mid, chn_mid, 1, stride=1, padding=0, bias=True),]
layers += [nn.LeakyReLU(0.2,True),]
layers += [nn.Conv2d(chn_mid, 1, 1, stride=1, padding=0, bias=True),]
if(use_sigmoid):
layers += [nn.Sigmoid(),]
self.model = nn.Sequential(*layers)
def forward(self,d0,d1,eps=0.1):
return self.model.forward(torch.cat((d0,d1,d0-d1,d0/(d1+eps),d1/(d0+eps)),dim=1))
class BCERankingLoss(nn.Module):
def __init__(self, chn_mid=32):
super(BCERankingLoss, self).__init__()
self.net = Dist2LogitLayer(chn_mid=chn_mid)
# self.parameters = list(self.net.parameters())
self.loss = torch.nn.BCELoss()
def forward(self, d0, d1, judge):
per = (judge+1.)/2.
self.logit = self.net.forward(d0,d1)
return self.loss(self.logit, per)
# L2, DSSIM metrics
class FakeNet(nn.Module):
def __init__(self, use_gpu=True, colorspace='Lab'):
super(FakeNet, self).__init__()
self.use_gpu = use_gpu
self.colorspace = colorspace
class L2(FakeNet):
def forward(self, in0, in1, retPerLayer=None):
assert(in0.size()[0]==1) # currently only supports batchSize 1
if(self.colorspace=='RGB'):
(N,C,X,Y) = in0.size()
value = torch.mean(torch.mean(torch.mean((in0-in1)**2,dim=1).view(N,1,X,Y),dim=2).view(N,1,1,Y),dim=3).view(N)
return value
elif(self.colorspace=='Lab'):
value = l2(tensor2np(tensor2tensorlab(in0.data,to_norm=False)),
tensor2np(tensor2tensorlab(in1.data,to_norm=False)), range=100.).astype('float')
ret_var = Variable( torch.Tensor((value,) ) )
if(self.use_gpu):
ret_var = ret_var.cuda()
return ret_var
class DSSIM(FakeNet):
def forward(self, in0, in1, retPerLayer=None):
assert(in0.size()[0]==1) # currently only supports batchSize 1
if(self.colorspace=='RGB'):
value = dssim(1.*tensor2im(in0.data), 1.*tensor2im(in1.data), range=255.).astype('float')
elif(self.colorspace=='Lab'):
value = dssim(tensor2np(tensor2tensorlab(in0.data,to_norm=False)),
tensor2np(tensor2tensorlab(in1.data,to_norm=False)), range=100.).astype('float')
ret_var = Variable( torch.Tensor((value,) ) )
if(self.use_gpu):
ret_var = ret_var.cuda()
return ret_var
def print_network(net):
num_params = 0
for param in net.parameters():
num_params += param.numel()
print('Network',net)
print('Total number of parameters: %d' % num_params)
class FloLPIPS(LPIPS):
def __init__(self, pretrained=True, net='alex', version='0.1', lpips=True, spatial=False, pnet_rand=False, pnet_tune=False, use_dropout=True, model_path=None, eval_mode=True, verbose=False):
super(FloLPIPS, self).__init__(pretrained, net, version, lpips, spatial, pnet_rand, pnet_tune, use_dropout, model_path, eval_mode, verbose)
def forward(self, in0, in1, flow, retPerLayer=False, normalize=False):
if normalize: # turn on this flag if input is [0,1] so it can be adjusted to [-1, +1]
in0 = 2 * in0 - 1
in1 = 2 * in1 - 1
in0_input, in1_input = (self.scaling_layer(in0), self.scaling_layer(in1)) if self.version=='0.1' else (in0, in1)
outs0, outs1 = self.net.forward(in0_input), self.net.forward(in1_input)
feats0, feats1, diffs = {}, {}, {}
for kk in range(self.L):
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
diffs[kk] = (feats0[kk]-feats1[kk])**2
res = [mw_spatial_average(self.lins[kk](diffs[kk]), flow, keepdim=True) for kk in range(self.L)]
return torch.sum(torch.cat(res, 1), dim=(1,2,3), keepdims=False)
class Flolpips(nn.Module):
def __init__(self):
super(Flolpips, self).__init__()
self.loss_fn = FloLPIPS(net='alex',version='0.1')
self.flownet = PWCNet()
@torch.no_grad()
def forward(self, I0, I1, frame_dis, frame_ref):
"""
args:
I0: first frame of the triplet, shape: [B, C, H, W]
I1: third frame of the triplet, shape: [B, C, H, W]
frame_dis: prediction of the intermediate frame, shape: [B, C, H, W]
frame_ref: ground-truth of the intermediate frame, shape: [B, C, H, W]
"""
assert I0.size() == I1.size() == frame_dis.size() == frame_ref.size(), \
"the 4 input tensors should have same size"
flow_ref = self.flownet(frame_ref, I0)
flow_dis = self.flownet(frame_dis, I0)
flow_diff = flow_ref - flow_dis
flolpips_wrt_I0 = self.loss_fn.forward(frame_ref, frame_dis, flow_diff, normalize=True)
flow_ref = self.flownet(frame_ref, I1)
flow_dis = self.flownet(frame_dis, I1)
flow_diff = flow_ref - flow_dis
flolpips_wrt_I1 = self.loss_fn.forward(frame_ref, frame_dis, flow_diff, normalize=True)
flolpips = (flolpips_wrt_I0 + flolpips_wrt_I1) / 2
return flolpips |