File size: 8,257 Bytes
b3f324b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import re
import sys
import torch
import random
import numpy as np
from PIL import ImageFile
import torch.nn.functional as F
from imageio import imread, imwrite
ImageFile.LOAD_TRUNCATED_IMAGES = True


class AverageMeter():
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0.
        self.avg = 0.
        self.sum = 0.
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


class AverageMeterGroups:
    def __init__(self) -> None:
        self.meter_dict = dict()
    
    def update(self, dict, n=1):
        for name, val in dict.items():
            if self.meter_dict.get(name) is None:
                self.meter_dict[name] = AverageMeter()
            self.meter_dict[name].update(val, n)
    
    def reset(self, name=None):
        if name is None:
            for v in self.meter_dict.values():
                v.reset()
        else:
            meter = self.meter_dict.get(name)
            if meter is not None:
                meter.reset()
    
    def avg(self, name):
        meter = self.meter_dict.get(name)
        if meter is not None:
            return meter.avg


class InputPadder:
    """ Pads images such that dimensions are divisible by divisor """
    def __init__(self, dims, divisor=16):
        self.ht, self.wd = dims[-2:]
        pad_ht = (((self.ht // divisor) + 1) * divisor - self.ht) % divisor
        pad_wd = (((self.wd // divisor) + 1) * divisor - self.wd) % divisor
        self._pad = [pad_wd//2, pad_wd - pad_wd//2, pad_ht//2, pad_ht - pad_ht//2]

    def pad(self, *inputs):
        if len(inputs) == 1:
            return F.pad(inputs[0], self._pad, mode='replicate')
        else:
            return [F.pad(x, self._pad, mode='replicate') for x in inputs]

    def unpad(self, *inputs):
        if len(inputs) == 1:
            return self._unpad(inputs[0])
        else:
            return [self._unpad(x) for x in inputs]
    
    def _unpad(self, x):
        ht, wd = x.shape[-2:]
        c = [self._pad[2], ht-self._pad[3], self._pad[0], wd-self._pad[1]]
        return x[..., c[0]:c[1], c[2]:c[3]]


def img2tensor(img):
    if img.shape[-1] > 3:
        img = img[:,:,:3]
    return torch.tensor(img).permute(2, 0, 1).unsqueeze(0) / 255.0


def tensor2img(img_t):
    return (img_t * 255.).detach(
                        ).squeeze(0).permute(1, 2, 0).cpu().numpy(
                        ).clip(0, 255).astype(np.uint8)

def seed_all(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


def read(file):
    if file.endswith('.float3'): return readFloat(file)
    elif file.endswith('.flo'): return readFlow(file)
    elif file.endswith('.ppm'): return readImage(file)
    elif file.endswith('.pgm'): return readImage(file)
    elif file.endswith('.png'): return readImage(file)
    elif file.endswith('.jpg'): return readImage(file)
    elif file.endswith('.pfm'): return readPFM(file)[0]
    else: raise Exception('don\'t know how to read %s' % file)


def write(file, data):
    if file.endswith('.float3'): return writeFloat(file, data)
    elif file.endswith('.flo'): return writeFlow(file, data)
    elif file.endswith('.ppm'): return writeImage(file, data)
    elif file.endswith('.pgm'): return writeImage(file, data)
    elif file.endswith('.png'): return writeImage(file, data)
    elif file.endswith('.jpg'): return writeImage(file, data)
    elif file.endswith('.pfm'): return writePFM(file, data)
    else: raise Exception('don\'t know how to write %s' % file)


def readPFM(file):
    file = open(file, 'rb')

    color = None
    width = None
    height = None
    scale = None
    endian = None

    header = file.readline().rstrip()
    if header.decode("ascii") == 'PF':
        color = True
    elif header.decode("ascii") == 'Pf':
        color = False
    else:
        raise Exception('Not a PFM file.')

    dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode("ascii"))
    if dim_match:
        width, height = list(map(int, dim_match.groups()))
    else:
        raise Exception('Malformed PFM header.')

    scale = float(file.readline().decode("ascii").rstrip())
    if scale < 0:
        endian = '<'
        scale = -scale
    else:
        endian = '>'

    data = np.fromfile(file, endian + 'f')
    shape = (height, width, 3) if color else (height, width)

    data = np.reshape(data, shape)
    data = np.flipud(data)
    return data, scale


def writePFM(file, image, scale=1):
    file = open(file, 'wb')

    color = None

    if image.dtype.name != 'float32':
        raise Exception('Image dtype must be float32.')

    image = np.flipud(image)

    if len(image.shape) == 3 and image.shape[2] == 3:
        color = True
    elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1:
        color = False
    else:
        raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.')

    file.write('PF\n' if color else 'Pf\n'.encode())
    file.write('%d %d\n'.encode() % (image.shape[1], image.shape[0]))

    endian = image.dtype.byteorder

    if endian == '<' or endian == '=' and sys.byteorder == 'little':
        scale = -scale

    file.write('%f\n'.encode() % scale)

    image.tofile(file)


def readFlow(name):
    if name.endswith('.pfm') or name.endswith('.PFM'):
        return readPFM(name)[0][:,:,0:2]

    f = open(name, 'rb')

    header = f.read(4)
    if header.decode("utf-8") != 'PIEH':
        raise Exception('Flow file header does not contain PIEH')

    width = np.fromfile(f, np.int32, 1).squeeze()
    height = np.fromfile(f, np.int32, 1).squeeze()

    flow = np.fromfile(f, np.float32, width * height * 2).reshape((height, width, 2))

    return flow.astype(np.float32)


def readImage(name):
    if name.endswith('.pfm') or name.endswith('.PFM'):
        data = readPFM(name)[0]
        if len(data.shape)==3:
            return data[:,:,0:3]
        else:
            return data
    return imread(name)


def writeImage(name, data):
    if name.endswith('.pfm') or name.endswith('.PFM'):
        return writePFM(name, data, 1)
    return imwrite(name, data)


def writeFlow(name, flow):
    f = open(name, 'wb')
    f.write('PIEH'.encode('utf-8'))
    np.array([flow.shape[1], flow.shape[0]], dtype=np.int32).tofile(f)
    flow = flow.astype(np.float32)
    flow.tofile(f)


def readFloat(name):
    f = open(name, 'rb')

    if(f.readline().decode("utf-8"))  != 'float\n':
        raise Exception('float file %s did not contain <float> keyword' % name)

    dim = int(f.readline())

    dims = []
    count = 1
    for i in range(0, dim):
        d = int(f.readline())
        dims.append(d)
        count *= d

    dims = list(reversed(dims))

    data = np.fromfile(f, np.float32, count).reshape(dims)
    if dim > 2:
        data = np.transpose(data, (2, 1, 0))
        data = np.transpose(data, (1, 0, 2))

    return data


def writeFloat(name, data):
    f = open(name, 'wb')

    dim=len(data.shape)
    if dim>3:
        raise Exception('bad float file dimension: %d' % dim)

    f.write(('float\n').encode('ascii'))
    f.write(('%d\n' % dim).encode('ascii'))

    if dim == 1:
        f.write(('%d\n' % data.shape[0]).encode('ascii'))
    else:
        f.write(('%d\n' % data.shape[1]).encode('ascii'))
        f.write(('%d\n' % data.shape[0]).encode('ascii'))
        for i in range(2, dim):
            f.write(('%d\n' % data.shape[i]).encode('ascii'))

    data = data.astype(np.float32)
    if dim==2:
        data.tofile(f)

    else:
        np.transpose(data, (2, 0, 1)).tofile(f)


def check_dim_and_resize(tensor_list):
    shape_list = []
    for t in tensor_list:
        shape_list.append(t.shape[2:])

    if len(set(shape_list)) > 1:
        desired_shape = shape_list[0]
        print(f'Inconsistent size of input video frames. All frames will be resized to {desired_shape}')
        
        resize_tensor_list = []
        for t in tensor_list:
            resize_tensor_list.append(torch.nn.functional.interpolate(t, size=tuple(desired_shape), mode='bilinear'))

        tensor_list = resize_tensor_list

    return tensor_list