File size: 1,611 Bytes
b3f324b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import torch
from torch import nn
from transformers import T5EncoderModel, CLIPModel, CLIPProcessor
from opensora.utils.utils import get_precision
class T5Wrapper(nn.Module):
def __init__(self, args):
super(T5Wrapper, self).__init__()
self.model_name = args.text_encoder_name
dtype = get_precision(args)
t5_model_kwargs = {'cache_dir': './cache_dir', 'low_cpu_mem_usage': True, 'torch_dtype': dtype}
self.text_enc = T5EncoderModel.from_pretrained(self.model_name, **t5_model_kwargs).eval()
def forward(self, input_ids, attention_mask):
text_encoder_embs = self.text_enc(input_ids=input_ids, attention_mask=attention_mask)['last_hidden_state']
return text_encoder_embs.detach()
class CLIPWrapper(nn.Module):
def __init__(self, args):
super(CLIPWrapper, self).__init__()
self.model_name = args.text_encoder_name
dtype = get_precision(args)
model_kwargs = {'cache_dir': './cache_dir', 'low_cpu_mem_usage': True, 'torch_dtype': dtype}
self.text_enc = CLIPModel.from_pretrained(self.model_name, **model_kwargs).eval()
def forward(self, input_ids, attention_mask):
text_encoder_embs = self.text_enc.get_text_features(input_ids=input_ids, attention_mask=attention_mask)
return text_encoder_embs.detach()
text_encoder = {
'DeepFloyd/t5-v1_1-xxl': T5Wrapper,
'openai/clip-vit-large-patch14': CLIPWrapper
}
def get_text_enc(args):
"""deprecation"""
text_enc = text_encoder.get(args.text_encoder_name, None)
assert text_enc is not None
return text_enc(args)
|