Spaces:
Runtime error
Runtime error
File size: 6,345 Bytes
248bc06 49901fa b14c223 248bc06 b14c223 ce4b9eb 248bc06 b14c223 248bc06 49901fa 248bc06 49901fa 248bc06 ce4b9eb b14c223 248bc06 b14c223 248bc06 ff83c1d b14c223 248bc06 b14c223 248bc06 b14c223 248bc06 b14c223 248bc06 b4146cd 248bc06 60d647a 248bc06 b14c223 248bc06 b14c223 f1a6530 8fbd147 b14c223 248bc06 b14c223 248bc06 f1a6530 248bc06 b14c223 f1a6530 b14c223 248bc06 b14c223 611e66d b14c223 b4146cd b14c223 248bc06 f1a6530 248bc06 b14c223 248bc06 611e66d b4146cd b14c223 b4146cd b14c223 248bc06 b14c223 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import gradio as gr
import torch
import devicetorch
from diffusers import StableDiffusionXLPipeline, StableDiffusionPipeline, LCMScheduler
from diffusers.schedulers import TCDScheduler
#import spaces
from PIL import Image
checkpoints = {
"2-Step": ["pcm_{}_smallcfg_2step_converted.safetensors", 2, 0.0],
"4-Step": ["pcm_{}_smallcfg_4step_converted.safetensors", 4, 0.0],
"8-Step": ["pcm_{}_smallcfg_8step_converted.safetensors", 8, 0.0],
"16-Step": ["pcm_{}_smallcfg_16step_converted.safetensors", 16, 0.0],
"Normal CFG 4-Step": ["pcm_{}_normalcfg_4step_converted.safetensors", 4, 7.5],
"Normal CFG 8-Step": ["pcm_{}_normalcfg_8step_converted.safetensors", 8, 7.5],
"Normal CFG 16-Step": ["pcm_{}_normalcfg_16step_converted.safetensors", 16, 7.5],
"LCM-Like LoRA": [
"pcm_{}_lcmlike_lora_converted.safetensors",
4,
0.0,
],
}
loaded = None
device = devicetorch.get(torch)
#if torch.cuda.is_available():
# pipe_sdxl = StableDiffusionXLPipeline.from_pretrained(
# "stabilityai/stable-diffusion-xl-base-1.0",
# torch_dtype=torch.float16,
# variant="fp16",
# ).to("cuda")
# pipe_sd15 = StableDiffusionPipeline.from_pretrained(
# "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16"
# ).to("cuda")
#@spaces.GPU(enable_queue=True)
def generate_image(
prompt,
ckpt,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
mode="sdxl",
):
global loaded
checkpoint = checkpoints[ckpt][0].format(mode)
guidance_scale = checkpoints[ckpt][2]
pipe_sdxl = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
).to(device)
pipe_sd15 = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16"
).to(device)
pipe = pipe_sdxl if mode == "sdxl" else pipe_sd15
if loaded != (ckpt + mode):
pipe.load_lora_weights(
"wangfuyun/PCM_Weights", weight_name=checkpoint, subfolder=mode
)
loaded = ckpt + mode
if ckpt == "LCM-Like LoRA":
pipe.scheduler = LCMScheduler()
else:
pipe.scheduler = TCDScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
timestep_spacing="trailing",
)
results = pipe(
prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale
)
# if SAFETY_CHECKER:
# images, has_nsfw_concepts = check_nsfw_images(results.images)
# if any(has_nsfw_concepts):
# gr.Warning("NSFW content detected.")
# return Image.new("RGB", (512, 512))
# return images[0]
return results.images[0]
def update_steps(ckpt):
num_inference_steps = checkpoints[ckpt][1]
if ckpt == "LCM-Like LoRA":
return gr.update(interactive=True, value=num_inference_steps)
return gr.update(interactive=False, value=num_inference_steps)
css = """
.gradio-container {
max-width: 60rem !important;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# Phased Consistency Model
Phased Consistency Model (PCM) is an image generation technique that addresses the limitations of the Latent Consistency Model (LCM) in high-resolution and text-conditioned image generation.
PCM outperforms LCM across various generation settings and achieves state-of-the-art results in both image and video generation.
[[paper](https://huggingface.co/papers/2405.18407)] [[arXiv](https://arxiv.org/abs/2405.18407)] [[code](https://github.com/G-U-N/Phased-Consistency-Model)] [[project page](https://g-u-n.github.io/projects/pcm)]
"""
)
with gr.Group():
with gr.Row():
prompt = gr.Textbox(label="Prompt", scale=8)
ckpt = gr.Dropdown(
label="Select inference steps",
choices=list(checkpoints.keys()),
value="2-Step",
)
steps = gr.Slider(
label="Number of Inference Steps",
minimum=1,
maximum=20,
step=1,
value=2,
interactive=False,
)
ckpt.change(
fn=update_steps,
inputs=[ckpt],
outputs=[steps],
queue=False,
show_progress=False,
)
submit_sdxl = gr.Button("Run on SDXL", scale=1)
submit_sd15 = gr.Button("Run on SD15", scale=1)
img = gr.Image(label="PCM Image")
gr.Examples(
examples=[
[" astronaut walking on the moon", "4-Step", 4],
[
"Photo of a dramatic cliffside lighthouse in a storm, waves crashing, symbol of guidance and resilience.",
"8-Step",
8,
],
[
"Vincent vangogh style, painting, a boy, clouds in the sky",
"Normal CFG 4-Step",
4,
],
[
"Echoes of a forgotten song drift across the moonlit sea, where a ghost ship sails, its spectral crew bound to an eternal quest for redemption.",
"4-Step",
4,
],
[
"Roger rabbit as a real person, photorealistic, cinematic.",
"16-Step",
16,
],
[
"tanding tall amidst the ruins, a stone golem awakens, vines and flowers sprouting from the crevices in its body.",
"LCM-Like LoRA",
4,
],
],
inputs=[prompt, ckpt, steps],
outputs=[img],
fn=generate_image,
#cache_examples="lazy",
)
gr.on(
fn=generate_image,
triggers=[ckpt.change, prompt.submit, submit_sdxl.click],
inputs=[prompt, ckpt, steps],
outputs=[img],
)
gr.on(
fn=lambda *args: generate_image(*args, mode="sd15"),
triggers=[submit_sd15.click],
inputs=[prompt, ckpt, steps],
outputs=[img],
)
demo.queue(api_open=False).launch(show_api=False)
|